The given functions are linearly dependent on any interval since
\[k_1 \sin t + k_2 \cos(t - \pi/2) = 0 \]
for all \(t \) if we choose \(k_1 = 1 \) and \(k_2 = -1 \).

Example 2

Show that the functions \(e^t \) and \(e^{2t} \) are linearly independent on any interval.

To establish this result we suppose that
\[k_1 e^t + k_2 e^{2t} = 0 \quad (3) \]
for all \(t \) in the interval; we must then show that \(k_1 = k_2 = 0 \). Choose two points \(t_0 \) and \(t_1 \) in the interval, where \(t_1 \neq t_0 \). Evaluating Eq. (3) at these points, we obtain
\[k_1 e^{t_0} + k_2 e^{2t_0} = 0, \]
\[k_1 e^{t_1} + k_2 e^{2t_1} = 0. \]

The determinant of coefficients is
\[e^{t_0} e^{2t_1} - e^{2t_0} e^{t_1} = e^{0} e^{t_1} (e^{t_1} - e^{t_0}). \]

Since this determinant is not zero, it follows that the only solution of Eq. (4) is \(k_1 = k_2 = 0 \). Hence \(e^t \) and \(e^{2t} \) are linearly independent.

The following theorem relates linear independence and dependence to the Wronskian.

Theorem 3.3.1

If \(f \) and \(g \) are differentiable functions on an open interval \(I \) and if \(W(f, g)(t_0) \neq 0 \) for some point \(t_0 \) in \(I \), then \(f \) and \(g \) are linearly independent on \(I \). Moreover, if \(f \) and \(g \) are linearly dependent on \(I \), then \(W(f, g)(t) = 0 \) for every \(t \) in \(I \).

To prove the first statement in Theorem 3.3.1, consider a linear combination \(k_1 f(t) + k_2 g(t) \), and suppose that this expression is zero throughout the interval. Evaluating the expression and its derivative at \(t_0 \), we have
\[k_1 f(t_0) + k_2 g(t_0) = 0, \]
\[k_1 f'(t_0) + k_2 g'(t_0) = 0. \]

The determinant of coefficients of Eqs. (5) is precisely \(W(f, g)(t_0) \), which is not zero by hypothesis. Therefore, the only solution of Eqs. (5) is \(k_1 = k_2 = 0 \), so \(f \) and \(g \) are linearly independent.

The second part of Theorem 3.3.1 follows immediately from the first. Let \(f \) and \(g \) be linearly dependent, and suppose that the conclusion is false, that is, \(W(f, g) \) is not everywhere zero in \(I \). Then there is a point \(t_0 \) such that \(W(f, g)(t_0) \neq 0 \); by the first part of Theorem 3.3.1 this implies that \(f \) and \(g \) are linearly independent, which is a contradiction, thus completing the proof.