Therefore
\[v'(t) = c_1 \]
and
\[v(t) = c_1 t + c_2, \] \hspace{1cm} (10)
where \(c_1 \) and \(c_2 \) are arbitrary constants. Finally, substituting for \(v(t) \) in Eq. (6), we obtain
\[y = c_1 t e^{-2t} + c_2 e^{-2t}. \] \hspace{1cm} (11)
The second term on the right side of Eq. (11) corresponds to the original solution \(y_1(t) = \exp(-2t) \), but the first term arises from a second solution, namely \(y_2(t) = t \exp(-2t) \). These two solutions are obviously not proportional, but we can verify that they are linearly independent by calculating their Wronskian:
\[
W(y_1, y_2)(t) = \begin{vmatrix} e^{-2t} & te^{-2t} \\ -2e^{-2t} & (1-2t)e^{-2t} \end{vmatrix} = e^{-4t} - 2te^{-4t} + 2te^{-4t} = e^{-4t} \neq 0.
\]
Therefore
\[y_1(t) = e^{-2t}, \quad y_2(t) = te^{-2t} \] \hspace{1cm} (12)
form a fundamental set of solutions of Eq. (5), and the general solution of that equation is given by Eq. (11). Note that both \(y_1(t) \) and \(y_2(t) \) tend to zero as \(t \to \infty \); consequently, all solutions of Eq. (5) behave in this way. The graph of a typical solution is shown in Figure 3.5.1.

![Figure 3.5.1](image-url)

FIGURE 3.5.1 A typical solution of \(y'' + 4y' + 4y = 0 \).

The procedure used in Example 1 can be extended to a general equation whose characteristic equation has repeated roots. That is, we assume that the coefficients in Eq. (1) satisfy \(b^2 - 4ac = 0 \), in which case
\[y_1(t) = e^{-bt/2a} \]
is a solution. Then we assume that
\[y = v(t)y_1(t) = v(t)e^{-bt/2a} \] \hspace{1cm} (13)