with infinitely differentiable coefficients $b_{k; \alpha; j}$, and $C(x, t, \partial_x, \partial_t)$ is a matrix of tangential differential operators $C_{k,j}(x, t, \partial_x, \partial_t)$ of order $\leq \mu_k + \tau_j$ on ∂C with smooth coefficients $c_{k,j; \alpha; s}$. We assume again that $\text{ord } B_k < 2m$ for $k = 1, \ldots, m + J$. Then the vector B admits the representation

\begin{equation}
B(x, t, \partial_x, \partial_t) u \big|_{\partial C} = Q(x, t, \partial_x, \partial_t) \cdot Du \big|_{\partial C},
\end{equation}

where Q is a $(m + J) \times J$-matrix of tangential differential operators $Q_{k,j}(x, t, \partial_x, \partial_t)$, ord $Q_{k,j} \leq \mu_k + 1 - j$, $Q_{k,j} \equiv 0$ if $\mu_k + 1 - j < 0$.

Moreover, we suppose that the coefficients of $L, B,$ and C stabilize for $t \to \pm \infty$, i.e., there exist smooth functions $a_{\alpha; j}^{(0)}, b_{k; \alpha; j}^{(0)}, c_{k,j; \alpha; s}^{(0)}$ on $\overline{\Omega}$ and in a neighbourhood of $\partial \Omega$, respectively, such that

\begin{align*}
&\partial_{\alpha}^{\mu} (a_{\alpha; j}(x, t) - a_{\alpha; j}^{(0)}(x)) \to 0 \quad \text{as } t \to \pm \infty, \\
&\partial_{\alpha}^{\mu} (b_{k; \alpha; j}(x, t) - b_{k; \alpha; j}^{(0)}(x)) \to 0 \quad \text{as } t \to \pm \infty \\
&\partial_{\alpha}^{\mu} (c_{k,j; \alpha; s}(x, t) - c_{k,j; \alpha; s}^{(0)}(x)) \to 0 \quad \text{as } t \to \pm \infty
\end{align*}

uniformly with respect to x for all nonnegative integer μ and all multi-indices γ.

We denote the operator of the problem (5.5.1), (5.5.2) by $A(t, \partial_t)$, while $A_0(\partial_t)$ denotes the operator of the model problem

\begin{align}
&L^{(0)}(x, \partial_x, \partial_t) u = f \quad \text{in } C, \\
&B^{(0)}(x, \partial_x, \partial_t) u + C^{(0)}(x, \partial_x, \partial_t) u = g \quad \text{on } \partial C
\end{align}

which arises from (5.5.1), (5.5.2) if we replace the coefficients $a_{\alpha; j}(x, t), b_{k; \alpha; j}(x, t), c_{k,j; \alpha; s}(x, t)$ by $a_{\alpha; j}^{(0)}(x, t), b_{k; \alpha; j}^{(0)}(x, t),$ and $c_{k,j; \alpha; s}^{(0)}(x, t)$, respectively. Both operators $A(t, \partial_t)$ and $A_0(\partial_t)$ continuously map the space (5.2.16) into (5.2.17) for arbitrary integer $l \geq 2m$ and real β. Furthermore, as an immediate consequence of the stabilization condition, we get the following lemma.

\textbf{Lemma 5.5.1.} Suppose that the coefficients of L stabilize for $t \to \pm \infty$. Then there exists a constant c_T such that

$$\|L(x, t, \partial_x, \partial_t) - L^{(0)}(x, \partial_x, \partial_t)\|_{W_{2,s}^l(\Omega)} \leq c_T \|u\|_{W_{2,s}^l(\Omega)}$$

for all $u \in W_{2,s}^l(\Omega)$ equal to zero in $\Omega \times (-T, +T)$, $l \geq 2m$. The factor c_T tends to zero as $T \to +\infty$.

Analogous assertions are valid for the operators B_k and $C_{k,j}$.

\textbf{5.5.2. Extension of the operator corresponding to the boundary value problem.} Analogously to the case when $L, B,$ and C are model operators, the following Green formula is valid for all $u, v \in C_{0}^{\infty}(\overline{\Delta}), u \in C_{0}^{\infty}(\partial C)^{J}$, $v \in C_{0}^{\infty}(\partial C)^{m+J} :$

\begin{equation}
(L(t, \partial_t)u, v)_{C} + (B(t, \partial_t)u + C(t, \partial_t)u, v)_{\partial C}
= (u, L^+(t, \partial_t) v)_{C} + (Du, P(t, \partial_t) u + Q^+(t, \partial_t) u)_{\partial C} + (u, C^+(t, \partial_t) u)_{\partial C}
\end{equation}

(for the sake of brevity, we have omitted the arguments x, ∂_x in the differential operators). Obviously, the coefficients of the formally adjoint operators $L^+(t, -\partial_t), Q^+(t, -\partial_t), C^+(t, -\partial_t)$ to $L(t, \partial_t), Q(t, \partial_t), C(t, \partial_t)$ stabilize at infinity. Furthermore, it can be easily shown that the coefficients of $P(t, -\partial_t)$ stabilize at infinity. This follows from the explicit formula (2.3.12) for the operator P in the Green formula for the half-space. In the same way as it was carried out for the operator $A_0(\partial_t)$ (see Lemma 5.3.3, Theorem 5.3.1), the operator $A(t, \partial_t)$ can be extended to the space (5.3.11) with arbitrary integer l. This leads to the following results.
Lemma 5.5.2. The operator
\[\mathcal{V}_{2,\beta}^{2m,2m}(C) \ni (u, Du|_{\partial C}) \rightarrow Lu = f \in \mathcal{W}_{2,\beta}^0(C) \]
can be uniquely extended to a continuous operator
\[\mathcal{W}_{2,\beta}^l,2m(C) \ni (u, \phi) \rightarrow f \in \mathcal{W}_{2,-\beta}^{2m-l}(C)^*, \quad l < 2m. \]

The functional \(f = L(u, \phi) \in \mathcal{W}_{2,-\beta}^{2m-l}(C)^* \) in (5.5.7) is given by the same formulas as in the case of \(t \)-independent coefficients (cf. Lemma 5.3.3). In the case \(l \leq 0 \) we have
\[(f, v) = (u, L^+(t, -\partial_t)v)_{\partial C} + \sum_{j=1}^{2m} (\phi_j, P_j(t, -\partial_t)v)_{\partial C} \]
for \(v \in \mathcal{W}_{2,-\beta}^{2m-l}(C) \), while in the case \(0 < l < 2m \) the formula (5.3.15) is valid, where \(L_{\alpha,j}, P_j \) and \(P_{l,j} \) are differential operators with \(t \)-dependent coefficients stabilizing at infinity.

Theorem 5.5.1. Suppose that the coefficients of \(L, B, \) and \(C \) stabilize at infinity. Then the operator
\[\mathcal{W}_{2,\beta}^l,2m(C) \times \mathcal{W}_{2,\beta}^{l+\tau-1/2}(\partial C) \ni (u, Du|_{\partial C}, y) \rightarrow (Lu, Bu|_{\partial C} + Cu) \in \mathcal{W}_{2,\beta}^{l-2m}(C) \times \mathcal{W}_{2,\beta}^{-\mu-1/2}(\partial C) \]
with \(l \geq 2m \) can be uniquely extended to a linear and continuous operator
\[\mathfrak{A}(t, \partial_t) : \mathcal{W}_{2,\beta}^l,2m(C) \times \mathcal{W}_{2,\beta}^{l+\tau-1/2}(\partial C) \rightarrow \mathcal{W}_{2,\beta}^{l-2m,0}(C) \times \mathcal{W}_{2,\beta}^{-\mu-1/2}(\partial C) \]
with \(l < 2m \). This extension has the form
\[(u, \phi, y) \rightarrow (L(u, \phi), Q\phi + Cy), \]
where \(L \) is the operator (5.5.7) and \(Q \) is the matrix in (5.5.3).

Due to the stabilization condition on the coefficients of the operators \(L, B, \) and \(C \) we can generalize the regularity assertion of Lemma 5.3.5.

Lemma 5.5.3. Suppose that the coefficients of \(L, B, C \) stabilize at infinity and the boundary value problem (5.5.1), (5.5.2) is elliptic. If \((u, \phi, y) \in \mathcal{W}_{2,\beta}^l,2m(C) \times \mathcal{W}_{2,\beta}^{l+\tau-1/2}(\partial C) \) is a solution of the equation \(\mathfrak{A}(t, \partial_t)(u, \phi, y) = (f, g) \), where \(f \in \mathcal{W}_{2,\beta}^{l-2m+1,0}(C) \) and \(g \in \mathcal{W}_{2,\beta}^{-\mu+1/2}(\partial C) \), then \((u, \phi, y) \in \mathcal{W}_{2,\beta}^{l+1,2m}(C) \times \mathcal{W}_{2,\beta}^{l+\tau+1/2}(\partial C) \). Furthermore, the inequality
\[\|(u, \phi, y)\|_{l+1, \beta} \leq c \left(\|f\|_{\mathcal{W}_{2,\beta}^{l-2m+1,0}(C)} + \|g\|_{\mathcal{W}_{2,\beta}^{-\mu+1/2}(\partial C)} + \|(u, \phi, y)\|_{l, \beta} \right) \]
is satisfied with a constant \(c \) independent of \((u, \phi, y) \). Here \(\| \cdot \|_{l, \beta} \) denotes the norm in \(\mathcal{W}_{2,\beta}^{l,2m}(C) \times \mathcal{W}_{2,\beta}^{l+\tau-1/2}(\partial C) \).

Proof: Let \((u, \phi, y) \) be an element of the space \(\mathcal{W}_{2,\beta}^{l,2m}(C) \times \mathcal{W}_{2,\beta}^{l+\tau-1/2}(\partial C) \) and let \(\zeta_k, \eta_k \) be the same functions as in the proof of Lemma 5.3.4. From Lemma 3.2.4 it follows that \(\zeta_k(u, \phi, y) \in \mathcal{W}_{2,\beta}^{l+1,2m}(C) \times \mathcal{W}_{2,\beta}^{l+\tau+1/2}(\partial C) \) and
\[\|(\zeta_k(u, \phi, y))\|_{l+1, \beta} \leq c_k \left(\|\zeta_k f\|_{\mathcal{W}_{2,\beta}^{l-2m+1,0}(C)} + \|\zeta_k g\|_{\mathcal{W}_{2,\beta}^{-\mu+1/2}(\partial C)} + \|\eta_k(u, \phi, y)\|_{l, \beta} \right) \]