{
 int * pt = new int; // allocate space for an int
 *pt = 1001; // store a value there

 cout << "int ";
 cout << "value = " << *pt << ": location = " << pt << "\n";

 double * pd = new double; // allocate space for a double
 *pd = 10000001.0; // store a double there

 cout << "double ";
 cout << "value = " << *pd << ": location = " << pd << "\n";
 cout << "size of pt = " << sizeof pt;
 cout << ": size of *pt = " << sizeof *pt << "\n";
 cout << "size of pd = " << sizeof pd;
 cout << ": size of *pd = " << sizeof *pd << "\n";
 return 0;
}

Here is the output:

int value = 1001: location = 0x004301a8
double value = 1e+07: location = 0x004301d8
size of pt = 4: size of *pt = 4
size of pd = 4: size of *pd = 8

Of course, the exact values for the memory locations differ from system to system.

Program Notes

The program uses `new` to allocate memory for the type `int` and type `double` data objects. This occurs while the program is running. The pointers `pt` and `pd` point to these two data objects. Without them, you cannot access those memory locations. With them, you can use `*pt` and `*pd` just as you would use variables. You assign values to `*pt` and `*pd` to assign values to the new data objects. Similarly, you print `*pt` and `*pd` to display those values.

The program also demonstrates one of the reasons you have to declare the type a pointer