1.6. *Growth condition*. (1) Let A be the identity component of a maximal Q-split torus S of G, and Φ the system of Q-roots of G with respect to S. Fix an ordering on Φ and let Δ be the set of simple roots. Given $t > 0$ let

$$A_t = \{ a \in A : |\alpha(a)| \geq t, (a \in \Delta) \}.$$

Let f be a function satisfying 1.3(a), (b), (c). Then the growth condition (d) is equivalent to:

(d') Given a compact set $R \subset G(R)$, and $t > 0$, there exist a constant $C > 0$ and a positive integer m such that

$$|f(x \cdot a)| \leq C \cdot |\alpha(a)|^m, \quad \text{for all } a \in A_t, \alpha \in \Delta, x \in R.$$

This follows from reduction theory [11, §2]. More precisely, let G' be the derived group of G. Then A is the direct product of $Z(R)^{e}$ and $A' = A \cap G'(R)$. For a function satisfying 1.3(a), (b), the growth condition (d') is equivalent to (d) for $a \in A_t'$; but says nothing for $a \in Z(R)^{\circ}$. However condition (c) implies that f depends polynomially on $z \in Z(R)$, and this takes care of the growth condition on $Z(R)$.

(2) Assume f satisfies 1.3(a), (b), (c) and

$$f(x \cdot z) = \chi(z)f(x) \quad (z \in Z(R), x \in G(R))$$

where χ is a character of $Z(R)/(Z(R) \cap I')$. Then $|f|$ is a function on $Z(R) \cdot I' \cap G(R)$. If $|f| \in L^p(Z(R) \cap G(R))$ for some $p \geq 1$, then f is slowly increasing, hence is an automorphic form. In view of the fact that $Z(R)/(Z(R) \cap G(R))$ has finite invariant volume, it suffices to prove this for $p = 1$. In that case, it follows from the corollary to Lemma 9 in [11], and from the existence of a K-invariant function $\alpha \in C^\infty_c(G(R))$ such that $f = f \ast \alpha$ (a well-known property of K-finite and $Z(q)$-finite elements in a differentiable representation of $G(R)$, which follows from 2.1 below).

1.7. **Theorem** [11, Theorem 1]. The space $\mathcal{A}(\Gamma, \xi, J, K)$ is finite dimensional.

This theorem is due to Harish-Chandra. Actually the proof given in [11] is for semisimple groups, but the extension to reductive groups is easy. In fact, it is implicitly done in the induction argument of [11] to prove the theorem. For another proof, see [13, Lemma 3.5]. At any rate, it is customary to fix a quasi-character χ of $Z(R)/(\Gamma' \cap Z(R))$ and consider the space $\mathcal{A}(\Gamma, \xi, J, K)_\chi$ of elements in $\mathcal{A}(\Gamma, \xi, J, K)$ which satisfy 1.6(3). For those, the reduction to the semisimple case is immediate. Note that since the identity component $Z(R)^{\circ}$ of $Z(R)$ (sometimes called the split component of $G(R)$) has finite index in $Z(R)$ and $Z(R)^{\circ} \cap \Gamma' = \{1\}$, it is substantially equivalent to require 1.6(3) for an arbitrary quasi-character of $Z(R)^{\circ}$.

The space $\mathcal{A}(\Gamma, \xi, J, K)$ is acted upon by the center $C(G(R))$ of $G(R)$, by left or right translations. Since it is finite dimensional, we see that any automorphic form is $C(G(R))$-finite.

1.8. **Cusp forms.** A continuous (resp. measurable) function on $G(R)$ is cuspidal if

$$\int_{(\Gamma' \cap N(R)) \backslash N(R)} f(n \cdot x) \, dn = 0,$$

for all (resp. almost all) x in $G(R)$, where N is the unipotent radical of any proper
parabolic Q-subgroup of G. It suffices in fact to require this for any proper maximal parabolic Q-subgroup [11, Lemma 3].

A cusp form is a cuspidal automorphic form. We let $\mathcal{A}(I', \xi, J, K)$ be the space of cusp forms in $\mathcal{A}(I', \xi, J, K)$.

Let f be a smooth function on $G(\mathbf{R})$ satisfying the conditions (a), (b), (c) of 1.3. Assume that f is cuspidal and that there exists a character χ of $Z(\mathbf{R})$ such that 1.6(3) is satisfied. Then the following conditions are equivalent:

(i) f is slowly increasing, i.e., f is a cusp form;

(ii) f is bounded;

(iii) $|f|$ is square-integrable modulo $Z(\mathbf{R}) \cdot I'$
(cf. [11, §4]). In fact, one has much more: $|f|$ decreases very fast to zero at infinity on $Z(\mathbf{R})\Gamma' \setminus G(\mathbf{R})$, so that if g is any automorphic form satisfying 1.6(3), then $|f \cdot g|$ is integrable on $Z(\mathbf{R}) \cdot I' \setminus G(\mathbf{R})$ (loc. cit.).

The space $\mathcal{A}(I', \xi, J, K)$ of the functions in $\mathcal{A}(I', \xi, J, K)$ satisfying 1.6(3) may then be viewed as a closed subspace of bounded functions in the space $L^2(I' \setminus G(\mathbf{R}))$ of functions on $I' \setminus G(\mathbf{R})$ satisfying 1.6(3), whose absolute value is square-integrable on $Z(\mathbf{R})\Gamma' \setminus G(\mathbf{R})$. Since $Z(\mathbf{R})\Gamma' \setminus G(\mathbf{R})$ has finite measure, this space is finite dimensional by a well-known lemma of Godement [11, Lemma 17]. This proves 1.7 for $\mathcal{A}(I, \xi, J, K)$ when $Z(\mathbf{R})\Gamma' \setminus G(\mathbf{R})$ is compact, and is the first step of the proof of 1.7 in general.

1.9. Let $a \in G(\mathbf{Q})$. Then $a \cdot I' = a' \cdot I' \cdot a^{-1}$ is an arithmetic subgroup of $G(\mathbf{Q})$, and the left translation l_a by a induces an isomorphism of $\mathcal{A}(I', \xi, J, K)$ onto $\mathcal{A}(a \cdot I', \xi, J, K)$. Let Σ be a family of arithmetic subgroups of $G(\mathbf{Q})$, closed under finite intersection, whose intersection is reduced to $\{1\}$. The union $\mathcal{A}(\Sigma, \xi, J, K)$ of the spaces $\mathcal{A}(I', \xi, J, K)$ ($I' \in \Sigma$) may be identified to the inductive limit of those spaces:

$$\mathcal{A}(\Sigma, \xi, J, K) = \text{ind}_{I' \in \Sigma} \mathcal{A}(I', \xi, J, K),$$

where the inductive limit is taken with respect to the inclusions

$$j_{p,p'}: \mathcal{A}(I'', \xi, J, K) \to \mathcal{A}(I''', \xi, J, K) \quad (I''', \xi, J, K)$$

associated to the projections $I'' \setminus G(\mathbf{R}) \to I' \setminus G(\mathbf{R})$.

Assume Σ to be stable under conjugation by $G(\mathbf{Q})$. Then $G(\mathbf{Q})$ operates on $\mathcal{A}(\Sigma, \xi, J, K)$ by left translations. Let us topologize $G(\mathbf{Q})$ by taking the elements of Σ as a basis of open neighborhoods of 1. Then this representation is admissible (every element is fixed under an open subgroup, and the fixed point set of every open subgroup is finite dimensional). By continuity, it extends to a continuous admissible representation of the completion $G(\mathbf{Q})_\mathbf{A}$ of $G(\mathbf{Q})$ for the topology just defined. For suitable Σ, the passage to $\mathcal{A}(\Sigma, \xi, J, K)$ amounts essentially to considering all adelic automorphic forms whose type at infinity is prescribed by ξ, J, K; the group $G(\mathbf{Q})_\mathbf{A}$ may be identified to the closure of $G(\mathbf{Q})$ in $G(\mathbf{A})$ and its action comes from one of $G(\mathbf{A})$). See 4.7.

1.10. Finally, we may let ξ and J vary and consider the space $\mathcal{A}(\Sigma, J, K)$ spanned by the $\mathcal{A}(\Sigma, \xi, J, K)$ and the space $\mathcal{A}(\Sigma, K)$ spanned by the $\mathcal{A}(\Sigma, J, K)$. They are $G(\mathbf{Q})_\mathbf{A}$-modules and (\mathfrak{g}, K)-modules, and these actions commute. Again, this has a natural adelic interpretation (4.8).

1.11. Hecke operators. Let $\mathcal{H}(G(\mathbf{Q}), \Gamma)$ be the Hecke algebra, over \mathcal{C}, of $G(\mathbf{Q})$