of its largest connected component to 1. As shown in Section 5.1, decreasing \(\kappa \) improves its time efficiency. On the other hand, it tends to a centralized behavior (17) by setting \(\epsilon \to 0^+ \): \(G \) becomes near-complete, thus resulting in \(\kappa \to K \).

Let
\[
\xi \triangleq \max_{n,v_{w,n},i,i'} \left| \left(\Sigma_{y_{w,n}} y_{w,n} \right)^{-1} \right|_{ii'}
\]
and \(\epsilon \triangleq 0.5 \log 1/(1 - (K^{1.5} L^{2.5} \kappa \xi \epsilon)^2) \). In the result below, we prove that the joint walk \(\hat{w} \) is guaranteed to achieve an entropy \(H[Z_{Y_{w,n}}] \) (i.e., by plugging \(\hat{w} \) into (18) that is not more than \(\epsilon \) from the maximum entropy \(H[Z_{Y_{w,n}}] \) achieved by joint walk \(w^* \) (17):

Theorem 2 (Performance Guarantee) If \(K^{1.5} L^{2.5} \kappa \xi \epsilon < 1 \), then
\[
H[Z_{Y_{w,n}}] - H[Z_{Y_{w,n}}] \leq \epsilon.
\]

Its proof is given in (Chen et al., 2012). The implication of Theorem 2 is that our partially decentralized active sensing algorithm can perform comparatively well (i.e., small \(\epsilon \)) under the following favorable environmental conditions: (a) the network of \(K \) sensors is not large, (b) length \(L \) of each sensor’s walk to be optimized is not long, (c) the largest subset of \(\kappa \) sensors being formed to coordinate their walks (i.e., largest connected component in \(G \)) is reasonably small, and (d) the minimum required correlation \(\epsilon \) between walks of adjacent sensors is kept low.

Algorithm 1 below outlines the key operations of our D²FAS algorithm to be run on each mobile sensor \(k \), as detailed previously in Sections 3 and 4:

Algorithm 1: D²FAS\((U, K, L, k, D_k, z_{D_k}, s_k)\)

```plaintext
while true
   /* Data fusion (Section 3) */
   Construct local summary by (6) & (7)
   Exchange local summary with every sensor \( i \neq k \)
   Construct global summary by (8) & (9)
   Predict measurements at unobserved road segments by (10) & (11)
   /* Active Sensing (Section 4) */
   Exchange \( \Phi_k \) with every sensor \( i \neq k \)
   Exchange adjacency vector \( a_k \) by (21) & (22)
   Exchange adjacency vector with every sensor \( i \neq k \)
   Construct adjacency matrix of coordination graph
   Find vertex set \( V_n \) of its residing connected component
   Compute maximum-entropy joint walk \( \hat{w}_{V_n} \) by (24)
   Execute walk \( \hat{w}_{V_n} \) and observe its road segments \( Y_{\hat{w}_{V_n}} \)
   Update local information \( D_k, z_{D_k}, \) and \( a_k \) by (16)
```

5 Time and Communication Overheads

In this section, the time and communication overheads of our D²FAS algorithm are analyzed and compared to that of centralized active sensing (17) coupled with the data fusion methods: Full GP (FGP) and SoD (Section 2).

5.1 Time Complexity

The data fusion component of D²FAS involves computing the local and global summaries and the predictive Gaussian distribution. To construct the local summary using (6) and (7), each sensor has to evaluate

\[
\sum_{D_k,D_k|U} \text{in } O(|U|^3 + |U|(|D|/K)^2)
\]
time and invert it in \(O(|D|/K)^3 \) time, after which the local summary is obtained in \(O(|U|^2|D|/K + |U|(|D|/K)^2) \) time. The global summary is computed in \(O(|U|^2K) \) by (8) and (9). Finally, the predictive Gaussian distribution is derived in \(O(|U|^3 + |U||Y|^2) \) time using (10) and (11). Supposing \(|Y| \leq |U|\) for simplicity, the time complexity of data fusion is then \(O(|D|/K)^3 + |U|^3 + |U|^2K) \).

Let the maximum-out-degree of \(G \) be denoted by \(\delta \). Then, each sensor has to consider \(\Delta \triangleq \delta^L \) possible walks of length \(L \). The active sensing component of D²FAS involves computing \(\Phi_k \) in \(O(\Delta L|U|^2) \) time, \(a_k \) in \(O(\Delta^2 L^2|U|/K) \) time, its residing connected component in \(O(\kappa^2) \) time, and the maximum-entropy joint walk by (11) and (24) with the following incurred time: The largest connected component of \(\kappa \) sensors in \(G \) has to consider \(\Delta^\epsilon \) possible joint walks. Note that \(\Sigma_{Y_{w,n}} Y_{w,n} = \text{diag}(\Sigma_{Y_{w,k}} Y_{w,k})_{k \in V_n} + \Sigma_{Y_{w,n}} U \Sigma_{Y_{w,n}} \) where \(\text{diag}(B) \) constructs a diagonal matrix by placing vector \(B \) on its diagonal. By exploiting \(\Phi_k \), the diagonal and latter matrix terms for all possible joint walks can be computed in \(O(\kappa \Delta (L|U|^2 + L^2|U|)) \) and \(O(\kappa^2 \Delta^2 L^2|U|) \) time, respectively. For each joint walk \(w_{V_n} \), evaluating the determinant of \(\Sigma_{Y_{w,n}} Y_{w,n} \) incurs \(O(\kappa L^3) \) time. Therefore, the time complexity of active sensing is \(O(\kappa \Delta L|U|^2 + \Delta^2 L^2|U|(K + \kappa^2) + \Delta^\epsilon (\kappa L^3)) \).

Hence, the time complexity of our D²FAS algorithm is \(O(|D|/K)^3 + |U|^2(|U| + K + \kappa \Delta L) + \Delta^2 L^2|U|(K + \kappa^2) + \Delta^\epsilon (\kappa L^3)) \). In contrast, the time incurred by centralized active sensing coupled with FGP and SoD are, respectively, \(O(|D|^3 + \Delta^K KL(|D|^2 + (KL)^2)) \) and \(O(|U|^3|D| + \Delta^K KL(|U|^2 + (KL)^2)) \). It can be observed that D²FAS can scale better with large \(|D|\) (i.e., number of observations) and \(K \) (i.e., number of sensors). The scalability of D²FAS vs. FGP and SoD will be further evaluated empirically in Section 6.

5.2 Communication Complexity

Let the communication overhead be defined as the size of each broadcast message. Recall from the data fusion component of D²FAS in Algorithm 1 that, in each iteration, each sensor broadcasts a \(O(|U|^2) \)-sized summary encapsulating its local observations, which is robust against communication failure. In contrast, FGP and SoD require each sensor to broadcast, in each iteration, a \(O(|D|/K) \)-sized message comprising exactly its local observations to handle communication failure. If the number of local observations grows to be larger in size than a local summary of predefined size, then the data fusion component of D²FAS is more scalable than FGP and SoD in terms of communication overhead. For the partially decentralized active sensing component of D²FAS, each sensor broadcasts \(O(\Delta L|U|) \)-sized \(\Phi_k \) and \(O(K) \)-sized \(a_k \) messages.