mod \mathcal{I}$. It is the space of complex valued functions on $G(\mathcal{Q})$ which are bi-invariant under \mathcal{I} and have support in a finite union of double cosets mod \mathcal{I}. The product may be defined directly in terms of double cosets (see, e.g., [17]) or of convolution (see below). This algebra operates on $\mathcal{A}(\mathcal{I}, \xi, J, K)$. The effect of $\mathcal{I} a \mathcal{I}$ ($a \in G(\mathcal{Q})$) is given by $f \mapsto \sum_{b \in (\mathcal{I} a \mathcal{I})} b \cdot f$. More generally, let $\mathcal{H}(G(\mathcal{Q}), \Sigma)$ be the Hecke algebra spanned by the characteristic functions of the double cosets $\mathcal{I} a \mathcal{I}$ ($\mathcal{I}, \mathcal{I} \in \Sigma, a \in G(\mathcal{Q}))$ [17, Chapter 3]. It may be identified with the Hecke algebra $\mathcal{H}(G(\mathcal{Q}_{\mathcal{I}})$ of locally constant compactly supported functions on $G(\mathcal{Q})_{\mathcal{I}}$. This identification carries $\mathcal{H}(G(\mathcal{Q}), \mathcal{I})$ onto $\mathcal{H}(G(\mathcal{Q}_{\mathcal{I}}), \mathcal{I})$, where \mathcal{I} is the closure of \mathcal{I} in $G(\mathcal{Q})_{\mathcal{I}}$ [12]. The product here is ordinary convolution (which amounts to finite sums in this case). Since $\mathcal{A}(\Sigma, \xi, J, K)$ is an admissible module for $G(\mathcal{Q}_{\mathcal{I}})$, the action of $G(\mathcal{Q}_{\mathcal{I}})$ extends in the standard way to one of $\mathcal{H}(G(\mathcal{Q}_{\mathcal{I}})$). The space $\mathcal{A}(\mathcal{I}, \xi, J, K)$ is the fixed point set of \mathcal{I}, and the previous operation of $\mathcal{H}(G(\mathcal{Q}), \mathcal{I})$ on this space may be viewed as that of $\mathcal{H}(G(\mathcal{Q}_{\mathcal{I}}), \mathcal{I})$. For an adelic interpretation, see 4.8.

2. Automorphic forms and representations of $G(R)$. The notion of automorphic form has a simple interpretation in terms of representations (which in fact suggested its present form). To give it, we need the following known lemma (cf. [18] for the terminology).

2.1. Lemma. Let (π, V) be a differentiable representation of $G(R)$. Let $v \in V$ be K-finite and $Z(\mathfrak{g})$-finite. Then the smallest (\mathfrak{g}, K)-submodule of V containing v is admissible.

Indeed, $\mathcal{H} \cdot v$ is a finite sum of spaces $\mathcal{H}^\circ \cdot w$, where \mathcal{H}° is the Hecke algebra of the identity component $G(\mathcal{R})^\circ$ of $G(\mathcal{R})$ and $K^\circ = K \cap G(\mathcal{R})^\circ$, and w is K°-finite and $Z(\mathfrak{g})$-finite. It suffices therefore to show that $\mathcal{H}^\circ \cdot v$ is an admissible (\mathfrak{g}, K)-module. By assumption, there exist an ideal R of finite codimension of the enveloping algebra $U(t)$ of the Lie algebra t of K and an ideal J of finite codimension of $Z(\mathfrak{g})$ which annihilate v and moreover $U(t)/R$ is a semisimple t-module. Then $\mathcal{H}^\circ \cdot v$ may be identified with $U(\mathfrak{g})/U(\mathfrak{g}) \cdot R \cdot J$. By a theorem of Harish-Chandra (see [19, 2.2.1.1]), $U(\mathfrak{g})/U(\mathfrak{g}) \cdot R$ is t-semisimple and its t-isotypic submodules are finitely generated $Z(\mathfrak{g})$-modules. Hence their quotients by J are finite dimensional.

2.2. We apply this to $C_c(\mathcal{I})(G(R))$, acted upon by $G(R)$ via right translations. Therefore, if f is automorphic form, then $f \ast \mathcal{H}$ is an admissible \mathcal{H}- or (\mathfrak{g}, K)-module. This module consists of automorphic forms. In fact, 1.3(a) is clear, and 1.3(b) follows from 2.1; its elements are annihilated by the same ideal of $Z(\mathfrak{g})$ as v, whence (d). Finally, there exists $\alpha \in C_c^\infty(G)$ such that $f \ast \alpha = f$ so that $f \ast X$ satisfies 1.2(c) (with the same exponent as f) for all $X \in U(\mathfrak{g})$ [11, Lemma 14]. Thus the spaces

$$\mathcal{A}(\mathcal{I}, \xi, J, K) = \Sigma_{\mathcal{I}} \mathcal{A}(\mathcal{I}, \xi, J, K), \quad \mathcal{A}(\mathcal{I}, K) = \Sigma_{\mathcal{I}} \mathcal{A}(\mathcal{I}, J, K),$$

are (\mathfrak{g}, K)-modules and unions of admissible (\mathfrak{g}, K)-modules.

If f is a cusp form, then $f \ast \mathcal{H}$ consists of cusp forms. Thus the subspace $\mathcal{A}(\mathcal{I}, K)$ of cusp forms is also an \mathcal{H}-module. If χ is a quasi-character of Z, then the space $\mathcal{A}(\mathcal{I}, K)_{\chi}$ of eigenfunctions for Z with character χ is a direct sum of irreducible admissible (\mathfrak{g}, K)-modules, with finite multiplicities. In fact, after a twist by $|\chi|^{-1}$, we may assume χ to be unitary, and we are reduced to the Gelfand-Piatetski-Shapiro theorem ([7], see also [11, Theorem 2], [13, pp. 41–42]) once
we identify \(\mathcal{A}(I, K)_x \) to the space of \(K \)-finite and \(Z(g) \)-finite elements in the space \(\mathcal{O}(I\backslash G(R))_x \) of cuspidal functions in \(L^2(I\backslash G(R))_x \) (see 1.8 for the latter).

3. Some notation. We fix some notation and conventions for the rest of this paper.

3.1. \(F \) is a global field, \(O_F \) the ring of integers of \(F \), \(V \) or \(V_F \) (resp. \(V_{\infty} \), resp. \(V_f \)) the set of places (resp. archimedean places, resp. nonarchimedean places) of \(F \), \(F_v \) the completion of \(F \) at \(v \in V \), \(O_v \) the ring of integers of \(F_v \) if \(v \in V_f \). As usual, \(A \) or \(A_F \) (resp. \(A_f \)) is the ring of adeles (resp. finite adeles) of \(F \).

3.2. \(G \) is a connected reductive group over \(F \), \(Z \) the greatest \(F \)-split torus of the center of \(G \), \(\mathcal{H}_v \), the Hecke algebra of \(G_v = G(F_v) \) (\(v \in V \)) [4]. Thus \(\mathcal{H}_v \) is of the type considered in \1 if \(v \in V_{\infty} \) and is the convolution algebra of locally constant compactly supported functions on \(G(F_v) \) if \(v \in V_f \). We set

\[
\mathcal{H}_\infty = \bigotimes_{v \in V_{\infty}} \mathcal{H}_v, \quad \mathcal{H}_f = \bigotimes_{v \in V_f} \mathcal{H}_v, \quad \mathcal{H} = \mathcal{H}_\infty \otimes \mathcal{H}_f,
\]

where the second tensor product is the restricted tensor product with respect to a suitable family of idempotents [4]. Thus \(\mathcal{H} \) is the global Hecke algebra of \(G(A) \) [4]. If \(F \) is a function field, then \(V_{\infty} \) is empty and \(\mathcal{H} = \mathcal{H}_f \).

If \(L \) is a compact open subgroup of \(G(A_f) \), we denote by \(\xi_L \) the associated idempotent, i.e., the characteristic function of \(L \) divided by the volume of \(L \) (relative to the Haar measure underlying the definition of \(\mathcal{H}_f \)). Thus \(f * \xi_L = f \) if and only if \(f \) is right invariant under \(L \).

The right translation by \(x \in G(A) \) on \(G(A) \), or on functions on \(G(A) \), is denoted \(r_x \) or \(r(x) \).

3.3. A continuous (resp. measurable) function on \(G(A) \) is cuspidal if

\[
\int_{N(F) \backslash N(A)} f(nx) \, dn = 0,
\]

for all (resp. almost all) \(x \in G(A) \), where \(N \) is the unipotent radical of any proper parabolic \(F \)-subgroup \(P \) of \(G \). It suffices to check this condition when \(P \) runs through a set of representatives of the conjugacy classes of proper maximal parabolic \(F \)-subgroups.

4. Groups over number fields.

4.1. In this section, \(F \) is a number field. An element \(\xi \in \mathcal{H} \) is said to be simple if it is of the form

\[
\xi = \xi_{\infty} \otimes \xi_f, \quad \xi_f \in \mathcal{H}_f, \xi_{\infty} \text{ idempotent in } \mathcal{H}_\infty.
\]

We let \(G_{\infty} = \prod v \in V_{\infty} G_v \) and \(g_{\infty} \) be the Lie algebra of \(G_{\infty} \), viewed as a real Lie group. We recall that \(G_{\infty} \) may be viewed canonically as the group of real points \(H(R) \) of a connected reductive group \(H \), namely the group \(H = R_{F/G} G \) obtained from \(G \) by restriction of scalars from \(F \) to \(Q \). This identification is understood when we apply the results and definitions of §§1, 2 to \(G_{\infty} \).

The group \(G(A) \) is the direct product of \(G_{\infty} \) by \(G(A_f) \). A complex valued function on \(G(A) \) is smooth if it is continuous and, if viewed as a function of two arguments \(x \in G_{\infty}, y \in G(A_f) \), it is \(C^\infty \) in \(x \) (resp. locally constant in \(y \)) for fixed \(y \) (resp. \(x \)).

4.2. Automorphic forms. Fix a maximal compact subgroup \(K_{\infty} \) of \(G_{\infty} \). A smooth function \(f \) on \(G(A) \) is a \(K_{\infty} \)-automorphic form on \(G(A) \) if it satisfies the following conditions: