about 20 of them (about half way along the x axis). Single values (as on the extreme left) are shown without any petals, while two points in the same place have two petals. As an option, you can specify two vectors containing the unique values of x and y with a third vector containing the frequency of each combination (the number of repeats of each value).

Summary

It is worth restating the really important things about plotting:

- **Plots:** `plot(x,y)` gives a scatterplot if x is continuous, and a box-and-whisker plot if x is a factor. Some people prefer the alternative syntax `plot(y~x)` using ‘tilde’ as in a model formula.

- **Type** of plot: Options include lines `type="l"` or null (axes only) `type="n"`.

- **Lines:** `lines(x,y)` plots a smooth function of y against x using the x and y values provided. You might prefer `lines(y~x)`.

- **Line types:** Useful with multiple line plots, `lty=2` (an option in `plot` or `lines`).

- **Points:** `points(x,y)` adds another set of data points to a plot. You might prefer `points(y~x)`.

- **Plotting characters** for different data sets: `pch=2` or `pch="*"` (an option in `points` or `plot`)

- Setting non-default limits to the x or y axis scales uses `xlim=c(0,25)` and/or `ylim=c(0,1)` as an option in `plot`.