Find a particular solution of
\[y'' - 3y' - 4y = 2 \sin t. \]
(11)

By analogy with Example 1, let us first assume that \(Y(t) = A \sin t \), where \(A \) is a constant to be determined. On substituting in Eq. (11) and rearranging the terms, we obtain
\[-5A \sin t - 3A \cos t = 2 \sin t, \]
or
\[(2 + 5A) \sin t + 3A \cos t = 0. \]
(12)
The functions \(\sin t \) and \(\cos t \) are linearly independent, so Eq. (12) can hold on an interval only if the coefficients \(2 + 5A \) and \(3A \) are both zero. These contradictory requirements mean that there is no choice of the constant \(A \) that makes Eq. (12) true for all \(t \). Thus we conclude that our assumption concerning \(Y(t) \) is inadequate. The appearance of the cosine term in Eq. (12) suggests that we modify our original assumption to include a cosine term in \(Y(t) \), that is,
\[Y(t) = A \sin t + B \cos t, \]
where \(A \) and \(B \) are to be determined. Then
\[Y'(t) = A \cos t - B \sin t, \quad Y''(t) = -A \sin t - B \cos t. \]
By substituting these expressions for \(y \), \(y' \), and \(y'' \) in Eq. (11) and collecting terms, we obtain
\[(-A + 3B - 4A) \sin t + (-B - 3A - 4B) \cos t = 2 \sin t. \]
(13)
To satisfy Eq. (13) we must match the coefficients of \(\sin t \) and \(\cos t \) on each side of the equation; thus \(A \) and \(B \) must satisfy the equations
\[-5A + 3B = 2, \quad -3A - 5B = 0. \]
Hence \(A = -5/17 \) and \(B = 3/17 \), so a particular solution of Eq. (11) is
\[Y(t) = -\frac{5}{17} \sin t + \frac{3}{17} \cos t. \]

The method illustrated in the preceding examples can also be used when the right side of the equation is a polynomial. Thus, to find a particular solution of
\[y'' - 3y' - 4y = 4t^2 - 1, \]
(14)
we initially assume that \(Y(t) \) is a polynomial of the same degree as the nonhomogeneous term, that is, \(Y(t) = At^2 + Bt + C \).

To summarize our conclusions up to this point: if the nonhomogeneous term \(g(t) \) in Eq. (1) is an exponential function \(e^{\alpha t} \), then assume that \(Y(t) \) is proportional to the same exponential function; if \(g(t) \) is \(\sin \beta t \) or \(\cos \beta t \), then assume that \(Y(t) \) is a linear combination of \(\sin \beta t \) and \(\cos \beta t \); if \(g(t) \) is a polynomial, then assume that \(Y(t) \) is a polynomial of like degree. The same principle extends to the case where \(g(t) \) is a product of any two, or all three, of these types of functions, as the next example illustrates.