Problem 5: A sum with three factors.

Here’s another sum that isn’t too bad. We wish to simplify

\[\sum_k \binom{n}{k} \binom{s}{k} k, \quad \text{integer } n \geq 0. \]

The index of summation \(k \) appears in both lower indices and with the same sign; therefore identity (5.23) in Table 169 looks close to what we need. With a bit of manipulation, we should be able to use it.

The biggest difference between (5.23) and what we have is the extra \(k \) in our sum. But we can absorb \(k \) into one of the binomial coefficients by using one of the absorption identities:

\[\sum_k \binom{n}{k} \binom{s}{k} k = \sum_k \binom{n}{k} \binom{s-1}{k-1} s \]

\[= s \sum_k \binom{n}{k} \binom{s-1}{k-1}. \]

We don’t care that the \(s \) appears when the \(k \) disappears, because it’s constant. And now we’re ready to apply the identity and get the closed form,

\[s \sum_k \binom{n}{k} \binom{s-1}{k-1} = s \binom{n+s-1}{n-1}. \]

If we had chosen in the first step to absorb \(k \) into \(\binom{n}{k} \), not \(\binom{s}{k} \), we wouldn’t have been allowed to apply (5.23) directly, because \(n-1 \) might be negative; the identity requires a nonnegative value in at least one of the upper indices.

Problem 6: A sum with menacing characteristics.

The next sum is more challenging. We seek a closed form for

\[\sum_{k \geq 0} \binom{n+k}{2k} \binom{2k}{k} \frac{(-1)^k}{k+1}, \quad \text{integer } n \geq 0. \]

One useful measure of a sum’s difficulty is the number of times the index of summation appears. By this measure we’re in deep trouble-\(k \) appears six times. Furthermore, the key step that worked in the previous problem—to absorb something outside the binomial coefficients into one of them—won’t work here. If we absorb the \(k+1 \) we just get another occurrence of \(k \) in its place. And not only that: Our index \(k \) is twice shackled with the coefficient \(2 \) inside a binomial coefficient. Multiplicative constants are usually harder to remove than additive constants.