(b) For each g the function $m \to \psi(m, g) = \phi(mg)$ is automorphic and cuspidal. Then $V_p \subseteq \mathcal{A}_p$. Since there is no point in dragging the subscript P about, we change notation, letting π be realized on V/U with $U \subseteq V \subseteq \mathcal{A}_p$. We suppose that V is generated by a single function ϕ.

Lemma 6. Let A be the centre of M. We may so choose ϕ and V that there is a character χ of $A(\mathcal{A})$ satisfying $\phi(\alpha g) = \chi(\alpha)\phi(g)$ for all $g \in G(A)$ and all $\alpha \in A(\mathcal{A})$.

Since $P(A) \backslash G(A)/K$ is finite, Lemma 3 implies that any $\phi \in \mathcal{A}_p$ is $A(\mathcal{A})$-finite. Choose V and the ϕ generating it to be such that the dimension of the span Y of $\{l(\alpha)\phi|\alpha \in A(\mathcal{A})\}$ is minimal. Here $l(\alpha)$ is left translation by α. If this dimension is one the lemma is valid. Otherwise there is an $\alpha \in A(\mathcal{A})$ and $\alpha \in C$ such that $0 < \dim(l(\alpha) - \alpha)Y < \dim Y$.

There are two possibilities. Either $(l(\alpha) - \alpha)U = (l(\alpha) - \alpha)V$ or $(l(\alpha) - \alpha)U \neq (l(\alpha) - \alpha)V$. In the second case we may replace ϕ by $(l(\alpha) - \alpha)\phi$, contradicting our choice. In the first we can realize π as a subquotient of the kernel of $(l(\alpha) - \alpha)\phi$.

What we do then is choose a lattice B in $A(\mathcal{A})$ such that $BA(F) \backslash A(\mathcal{A})$ is compact. Amongst all those ϕ and V for which Y has the minimal possible dimension we choose one ϕ for which the subgroup of B, defined as $\{b \in B|l(b)\phi = \beta\phi, \beta \in \mathcal{C}\}$, has maximal rank. What we conclude from the previous paragraph is that this rank must be that of B. Since ϕ is invariant under $A(\mathcal{A})$ and $BA(F) \backslash A(\mathcal{A})$ is compact, we conclude that Y must now have dimension one. The lemma follows.

Choosing such a ϕ and V we let ν be that positive character of $M(A)$ which satisfies

$$\nu(\alpha) = |\chi(\alpha)|, \quad \alpha \in A(\mathcal{A}),$$

and introduce the Hilbert space $L^2_2 = L^2_2(M(F), M(A), \chi)$ of all measurable functions ϕ on $M(Q) \backslash M(A)$ satisfying:

(i) For all $m \in M(A)$ and all $\alpha \in A(\mathcal{A})$, $\phi(\alpha g) = \chi(\alpha)\phi(g)$.

(ii) $\int_{A(\mathcal{A})M(Q)/M(A)} \nu^{-2}(m)|\phi(m)|^2 \, dm < \infty$.

L^2_2 is a direct sum of irreducible invariant subspaces, and if $\phi \in V$ then $m \to \phi(m, g)$ lies in L^2_2 for all $g \in G(A)$. Choose some irreducible component H of L^2_2 on which the projection of $\phi(\cdot, g)$ is not zero for some $g \in G(A)$.

For each $\psi \in V$ define $\psi(\cdot, g)$ to be the projection of $\phi(\cdot, g)$ on H. It is easily seen that, for all $m_1 \in M(A), \phi'(mm_1, g) = \phi'(m, m_1g)$. Thus we may define $\phi'(g)$ by $\phi'(g) = \phi'(1, g)$. If $V' = \{\phi' | \phi \in V\}$, then we realize π as a quotient of V'. However if δ^2 is the modular function for $M(A)$ on $N(A)$ and σ the representation of $M(A)$ on H then V' is contained in the space of Ind $\delta^{-1} \sigma$.

To prove the converse, and thereby complete the proof of the proposition, we exploit the analytic continuation of the Eisenstein series associated to cusp forms. Suppose π is a representation of the global Hecke algebra \mathcal{H}, defined with respect to some maximal compact subgroup K of $G(A)$. Choose an irreducible representation κ of K which is contained in π. If E_κ is the idempotent defined by K let $\mathcal{H}_\kappa = E_\kappa \mathcal{H} E_\kappa$ and let π_κ be the irreducible representation of \mathcal{H}_κ on the κ-isotypical subspace of π. To show that π is an automorphic representation, it is sufficient to show that π_κ is a constituent of the representation of \mathcal{H}_κ on the space of automorphic
forms of type κ. To lighten the burden on the notation, we henceforth denote π_κ by π and \mathcal{H}_κ by \mathcal{H}.

Suppose P and the cuspidal representation σ of $M(A)$ are given. Let L be the lattice of rational characters of M defined over F and let $L_\mathcal{C} = L \otimes \mathbb{C}$. Each element μ of $L_\mathcal{C}$ defines a character ξ_μ of $M(A)$. Let I_μ be the κ-isotypical subspace of Ind $\xi_\mu \sigma$ and let $I = I_0$. We want to show that if π is a constituent of the representation on I then π is a constituent of the representation of \mathcal{H} on the space of automorphic forms of type κ.

If $\{g_i\}$ is a set of coset representations for $P(A) \backslash G(A) / K$ then we may identify I_μ with I by means of the map $\varphi \rightarrow \varphi_\mu$ with

$$\varphi_\mu(nmg_i, k) = \xi_\mu(m) \varphi(nmg_i, k).$$

In other words we have a trivialization of the bundle $\{I_\mu\}$ over $L_\mathcal{C}$, and we may speak of a holomorphic section or of a section vanishing at $\mu = 0$ to a certain order. These notions do not depend on the choice of the g_i, although the trivialization does.

There is a neighbourhood U of $\mu = 0$ and a finite set of hyperplanes passing through U so that for μ in the complement of these hyperplanes in U the Eisenstein series $E(\varphi)$ is defined for φ in I_μ. To make things simpler we may even multiply E by a product of linear functions and assume that it is defined on all of U. Since it is only the modified function that we shall use, we may denote it by E, although it is no longer the true Eisenstein series. It takes values on the space of automorphic forms and thus $E(\varphi)$ is a function $g \rightarrow E(g, \varphi)$ on $G(A)$. It satisfies

$$E(\rho_\mu(h)\varphi) = r(h)E(\varphi)$$

if $h \in \mathcal{H}$ and ρ_μ is Ind $\xi_\mu \sigma$. In addition, if φ_μ is a holomorphic section of $\{I_\mu\}$ in a neighbourhood of 0 then $E(g, \varphi_\mu)$ is holomorphic in μ for each g, and the derivatives of $E(\varphi_\mu)$, taken pointwise, continue to be in \mathcal{A}.

Let I_μ be the space of germs of degree r at $\mu = 0$ of holomorphic sections of I. Then $\varphi_\mu \rightarrow \rho_\mu(h)\varphi_\mu$ defines an action of \mathcal{H} on I_μ. If $s \leq r$ the natural map $I_s \rightarrow I_\mu$ is an \mathcal{H}-homomorphism. Denote its kernel by I_s^μ. Certainly $I_0 = I$. Choosing a basis for the linear forms on $L_\mathcal{C}$ we may consider power series with values in the κ-isotypical subspace of \mathcal{A}, $\sum_{|\alpha| \leq r} \mu^\alpha \phi_\alpha$. \mathcal{H} acts by right translation in this space and the representation so obtained is, of course, a direct sum of that on the κ-isotypical automorphic forms. Moreover $\varphi_\mu \rightarrow E(\varphi_\mu)$ defines an \mathcal{H}-homomorphism λ from I_μ to this space. To complete the proof of the proposition all one needs is the Jordan-Hölder theorem and the following lemma.

Lemma 7. For r sufficiently large the kernel of λ is contained in I_0^μ.

Since we are dealing with Eisenstein series associated to a fixed P and σ we may replace E by the sum of its constant terms for the parabolic associated to P, modifying λ accordingly. All of these constant terms vanish identically if and only if E itself does. If Q_1, \ldots, Q_m is a set of representatives for the classes of parabolics associated to P let $E_i(\varphi)$ be the constant term along Q_i. We may suppose that M is a Levi factor of each Q_i. Define $\nu(m)$ for $m \in M(A)$ by $\xi_\mu(m) = e^{\langle \mu, \nu(m) \rangle}$. Thus $\nu(m)$ lies in the dual of $L_\mathcal{R}$. If $\varphi \in I_\mu$, the function $E_\lambda(\varphi)$ has the form