(ii) \(W_{\psi(h)\phi}(g) = W_{\psi}(gh) \), for all \(g, h \in G \).

We have the following important result due to Gelfand-Kazhdan for the case \(k \) nonarchimedean, and Shalika for general local fields ([1], [2]).

Uniqueness Theorem. For each irreducible admissible smooth representation \((\pi, V)\), there exists at most one \(W(\pi, \phi) \) (for fixed \(\phi \)).

For \(k \) archimedean we assume that \((\pi, V)\) is a unitarizable representation and \(V = \{ x \in H \mid (\mathcal{D}x, \mathcal{D}x) < \infty \forall \mathcal{D} \in \text{enveloping algebra} \} \). Here \(H \) means the completion of \(V \) with respect to the inner product \((x, x)\). We assume also that \(W_{\phi}(1) \) is a continuous linear functional on \(V \) with respect to the topology defined by semi-norms \((\mathcal{D}x, \mathcal{D}x), \mathcal{D} \in \text{enveloping algebra} \).

Returning to the global case, we point out that the preceding discussion easily implies uniqueness of global Whittaker models (defined in the obvious way).

2. Global Fourier analysis. Let \((\pi, V)\) be admissible irreducible cuspidal as before, \(\phi \in V \). Then we can define

\[
W_{\phi}(g) = \int_{X_{A} \times X_{A}} \phi(xg)\phi^{-1}(x) \, dx.
\]

Global Fourier analysis says that this “Fourier transform” defines a cusp-form uniquely. In the classical setting this is due to Hecke; for \(n = 2 \) it is proved in Jacquet-Langlands [3]; for \(n > 2 \) it is due independently to Piatetski-Shapiro [4] and Shalika [2]. The proof is motivated by a corresponding result over a finite field due to S. I. Gelfand [5].

It is now easy to see that these results imply Theorem (1), since

\[
\dim \text{Hom}_{c}(V, W(\pi, \phi)) = 1 \geq \dim \text{Hom}_{c}(V, L_{0}).
\]

We now turn to the proof of the strong multiplicity one theorem. First we discuss the case \(n = 2 \); we need the following

Small Lemma. (1) Assume \(k \) local, \((\pi_{1}, V_{1}), (\pi_{2}, V_{2})\) two irreducible admissible representations with Whittaker models. Then there exist \(v_{1} \in V_{1}, v_{2} \in V_{2} \) such that

\[
W_{v_{1}}(x \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}) = W_{v_{2}}(x \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}) \quad (W_{v_{i}} \in W(\pi_{i}, \lambda)).
\]

(2) If \(k = \mathbb{R} \) or \(\mathbb{C} \) we assume that \((\pi_{1}, H_{1})\) and \((\pi_{2}, H_{2})\) are irreducible infinite-dimensional unitary representations. Denote by \(V_{1} (V_{2}) \) the set of all smooth vectors in \(H_{1} (H_{2}) \). Then there exist \(v_{1} \in V_{1}, v_{2} \in V_{2} \) such that

\[
W_{v_{1}}(x \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}) = W_{v_{2}}(x \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}) \quad (W_{v_{i}} \in W(\pi_{i}, \phi)).
\]

Proof. For \(k \) a local nonarchimedean field it is known that \(V \) contains all Schwartz-Bruhat functions with compact support in \(k^{a} \). Hence we have what we want.

Now let \(k = \mathbb{R} \) or \(\mathbb{C} \). The Kirillov theorem (see [8, p. 221]) says that each irreducible infinite-dimensional unitary representation of \(\text{GL}(2, k) \) remains irreducible after restriction on the subgroup \(\{ \mathbf{GL}(2) \} = P \) and hence as a representation of \(P \) is isomorphic to the standard representation of \(P \). Hence, if \(\phi(x) \) is a \(C^{\infty} \)-function with compact support then there exist \(v_{1} \in V_{1}, v_{2} \in V_{2} \) such that
\[W_{\nu}(x^0) = \varphi(x). \]

Remark. Assume that for a unitary representation with a Whittaker model the inner product can be written as an integral similar to the case for \(n = 2 \). Using this result we can prove the "small lemma" for any \(n \) as we did for \(n = 2 \). This implies the strong multiplicity one theorem for any \(n \).

Next we give the formula for recovering \(\varphi \) from its Whittaker model due to Jacquet-Langlands, for \(\text{GL}(2, A) \):

\[(*) \quad \varphi(g) = \sum_{j \in k^*} W_j(\begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} g). \]

Now suppose \(\pi_1, \pi_2 \) satisfy the hypotheses of the theorem. To prove the assertion, it is enough to produce a nonzero \(\varphi \in V_1 \cap V_2 \), since then the irreducibility of \((\pi_i, V_i) \) implies equality. Further, since \(B \backslash G \) is dense in \(G \backslash G_A \), it is enough to produce two functions (nonzero) \(\varphi_i \in V_i \) which are equal on \(B_A \) (as usual \(B \) is the group of upper triangular matrices).

From the properties of Whittaker models and \((*) \), it is enough to produce Whittaker functions \(W_1, W_2 \) such that \(W_1(\begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} x) = W_2(\begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} x) \), \(x \in A^* \). One can suppose such \(W_i \) are of the form \(\prod_{j \in k^*} \varphi_j \) and then it suffices to construct the appropriate \(W_i \) at a finite number of places (by assumption). But then one can use the small lemma. This type of argument was found independently here by Shalika and in Moscow.

For \(n \geq 3 \), we need a similar small lemma (Gelfand-Kazhdan): Suppose \(k \) local, nonarchimedean, \((\pi_i, V_i) \), \(i = 1, 2 \), irreducible admissible representations with Whittaker models. There exist \(\psi \) such that

\[W_{\psi}(h^0) = W_{\psi}(h^0), \quad \text{all } h \in \text{GL}(n - 1). \]

One can then employ induction using arguments similar to the case \(n = 2 \), in order to prove the general case. It should be possible to prove this lemma also for \(k \) archimedean; then the restriction we made that \(S \) contains no infinite places could be removed.

Now suppose \(G \) is quasi-split and satisfies the transitivity condition:

\[T(A) \text{ acts transitively on } \prod_{\alpha \text{ simple root}} X_{\alpha}(A). \]

Here \(T \) is a maximal \(k \)-torus in a Borel group, \(X_{\alpha} = X_{\alpha} - \{ I \} \) where \(X_{\alpha} \) is the root group associated to the simple root \(\alpha \).

Define an automorphic cuspidal irreducible representation \((\pi, V) \) to be hypercuspidal (degenerate cuspidal) if

\[W_{\psi}(g) = \int_{X_{\pi} \times X_{\psi}} \varphi(xg)\psi^{-1}(x) \, dx = 0 \]

for all \(\varphi \in V \). Holomorphic cusp forms lifted from symmetric spaces which contain no copies of \(H = \{ \text{Im } z > 0 \} \) are of this type.

A cuspidal automorphic form will be called generic if it is orthogonal to all hypercuspidal automorphic forms (under the usual scalar product \(\int_{CG_{\chi}(A)} \varphi \psi \, dg \)).

Counterexamples to the Ramanujan conjecture given during this conference by Howe and the author are hypercuspidal forms [6]. The author does not wish to kill