this explains why the series with parameter \(t \) are called “generalized” binomials and exponentials.

The following pairs of identities are valid for all real \(r \):

\[
\mathcal{B}_1(z)^r = \sum_{k \geq 0} \binom{tk + r}{k} \frac{r}{tk + r} z^k;
\]

\[
\mathcal{E}_1(z)^r = \sum_{k \geq 0} \frac{(tk + r)^{k-1}}{k!} z^k; \tag{5.60}
\]

\[
\frac{\mathcal{B}_1(z)^r}{1 - t + t \mathcal{B}_1(z)} = \sum_{k \geq 0} \binom{tk + r}{k} z^k;
\]

\[
\frac{\mathcal{E}_1(z)^r}{1 - tz \mathcal{E}_1(z)} = \sum_{k \geq 0} \frac{(tk + r)^k}{k!} z^k. \tag{5.61}
\]

(When \(tk + r = 0 \), we have to be a little careful about how the coefficient of \(z^k \) is interpreted; each coefficient is a polynomial in \(r \). For example, the constant term of \(\mathcal{E}_1(z)^r \) is \(r(0 + r)^{-1} \), and this is equal to 1 even when \(r = 0 \).

Since equations (5.60) and (5.61) hold for all \(r \), we get very general identities when we multiply together the series that correspond to different powers \(r \) and \(s \). For example,

\[
\mathcal{B}_1(z)^r \frac{\mathcal{B}_1(z)^s}{1 - t + t \mathcal{B}_1(z)} = \sum_{k \geq 0} \binom{tk + r}{k} \frac{r}{tk + r} z^k \sum_{i \geq 0} \binom{tk + s}{i} \frac{r}{tk + s} z^i = \sum_{n \geq 0} \sum_{k \geq 0} \binom{tk + r}{k} \frac{r}{tk + r} \binom{tk + s}{n - k} z^n.
\]

This power series must equal

\[
\frac{\mathcal{B}_1(z)^{r+s}}{1 - t + t \mathcal{B}_1(z)} = \sum_{n \geq 0} \binom{tn + r + s}{n} z^n,
\]

hence we can equate coefficients of \(z^n \) and get the identity

\[
\sum_{k} \binom{tk + r}{k} \binom{tn + r + s}{n - k} \frac{r}{tk + r} = \binom{tn + r + s}{n}, \quad \text{integer } n,
\]

valid for all real \(r \), \(s \), and \(t \). When \(t = 0 \) this identity reduces to Vandermonde’s convolution. (If by chance \(tk + r \) happens to equal zero in this formula, the denominator factor \(tk + r \) should be considered to cancel with the \(tk+r \) in the numerator of the binomial coefficient. Both sides of the identity are polynomials in \(r \), \(s \), and \(t \).) Similar identities hold when we multiply \(\mathcal{B}_1(z)^{r} \) by \(\mathcal{B}_1(z)^{s} \), etc.; Table 202 presents the results.