It’s our old friend, the geometric series; \(F(\alpha', \ldots, \alpha_n; b, \ldots, b_n; z) \) is called hypergeometric because it includes the geometric series \(F(1,1;1;z) \) as a very special case.

The general case \(m = 1 \) and \(n = 0 \) is, in fact, easy to sum in closed form,

\[
F\left(\begin{array}{c}a_1 \\ 1\end{array}\right|z) = \sum_{k \geq 0} \binom{a_1}{k} \frac{z^k}{k!} = \sum_{k} \binom{a+k-1}{k} \frac{1}{(1-z)^a}, \quad (5.77)
\]

using (5.56). If we replace \(a \) by \(-a\) and \(z \) by \(-z\), we get the binomial theorem,

\[
F\left(\begin{array}{c}-a_1 \\ 1\end{array}\right|-z) = (1+z)^a
\]

A negative integer as upper parameter causes the infinite series to become finite, since \((-a)^k = 0\) whenever \(k > a \geq 0 \) and \(a \) is an integer.

The general case \(m = 0 \), \(n = 1 \) is another famous series, but it’s not as well known in the literature of discrete mathematics:

\[
F\left(\begin{array}{c}1 \\ b;1\end{array}\right|z) = \sum_{k \geq 0} \frac{(b-1)!}{(b-1+k)!} z^k \frac{1}{k!} \quad (5.78)
\]

This function \(\mathcal{I}_b \) is called a “modified Bessel function” of order \(b-1 \). The special case \(b = 1 \) gives us \(F(1,1;1|z) = I_0(2\sqrt{z}) \), which is the interesting series \(\sum_{k \geq 0} \frac{1}{k!} z^k \).

The special case \(m = n = 1 \) is called a “confluent hypergeometric series” and often denoted by the letter \(M \):

\[
F\left(\begin{array}{c}1 \\ a,b;1\end{array}\right) = \sum_{k \geq 0} \frac{\binom{a}{k} z^k}{k!} = M(a,b,z) \quad (5.79)
\]

This function, which has important applications to engineering, was introduced by Ernst Kummer.

By now a few of us are wondering why we haven’t discussed convergence of the infinite series (5.76). The answer is that we can ignore convergence if we are using \(z \) simply as a formal symbol. It is not difficult to verify that formal infinite sums of the form \(\sum_{k \geq n} \alpha_k z^k \) form a field, if the coefficients \(\alpha_k \) lie in a field. We can add, subtract, multiply, divide, differentiate, and do functional composition on such formal sums without worrying about convergence; any identities we derive will still be formally true. For example, the hypergeometric \(F\left(\begin{array}{c}1,1,1 \\ 1\end{array}\right|z) = \sum_{k \geq 0} \frac{k!}{k!} z^k \) doesn’t converge for any \textbf{nonzero} \(z \); yet we’ll see in Chapter 7 that we can still use it to solve problems. On the other hand, whenever we replace \(z \) by a particular numerical value, we do have to be sure that the infinite sum is well defined.