the conflict set from SA (minus Q itself, of course) into its own direct conflict set, which is \{NT, NSW\}; the new conflict set is \{WA, NT, NSW\}. That is, there is no solution from Q onward, given the preceding assignment to \{WA, NT, NSW\}. Therefore, we backtrack to NT, the most recent of these. NT absorbs \{WA, NT, NSW\} into its own direct conflict set \{WA\}, giving \{WA, NSW\}. Now the algorithm backjumps to NSW, as we would hope. To summarize: let X_j be the current variable, and let \(conf(X_j)\) be its conflict set. If every possible value for X_j fails, backjump to the most recent variable X_i in \(conf(X_j)\), and set

\[
conf(X_i) = conf(X_i) \cup \{X_j\}
\]

When we reach a contradiction, backjumping can tell us how far to back up, so we don't waste time changing variables that won't fix the problem. But we would also like to avoid running into the same problem again. When the search arrives at a contradiction, we know that some subset of the conflict set is responsible for the problem. Constraint learning is the idea of finding a minimum set of variables from the conflict set that causes the problem. This set of variables, along with their corresponding values, is called a no-good. We then record the no-good, either by adding a new constraint to the CSP or by keeping a separate cache of no-goods.

For example, consider the state \{WA = red, NT = green, Q = blue\} in the bottom row of Figure 6.6. Forward checking can tell us this state is a no-good because there is no valid assignment to SA. In this particular case, recording the no-good would not help, because once we prune this branch from the search tree, we will never encounter this combination again. But suppose that the search tree in Figure 6.6 were actually part of a larger search tree that started by first assigning values for V and T. Then it would be worthwhile to record \{WA = red, NT = green, Q = blue\} as a no-good because we are going to run into the same problem again for each possible set of assignments to V and T.

No-goods can be effectively used by forward checking or by backjumping. Constraint learning is one of the most important techniques used by modern CSP solvers to achieve efficiency on complex problems.

6.4 Local Search for CSPs

Local search algorithms (see Section 4.1) turn out to be effective in solving many CSPs. They use a complete-state formulation: the initial state assigns a value to every variable, and the search changes the value of one variable at a time. For example, in the 8-queens problem (see Figure 4.3), the initial state might be a random configuration of 8 queens in 8 columns, and each step moves a single queen to a new position in its column. Typically, the initial guess violates several constraints. The point of local search is to eliminate the violated constraints.

In choosing a new value for a variable, the most obvious heuristic is to select the value that results in the minimum number of conflicts with other variables—the **min-conflicts**. Local search can easily be extended to constraint optimization problems (COPs). In that case, all the techniques for hill climbing and simulated annealing can be applied to optimize the objective function.
Section 6.4. Local Search for CSPs

function MIN-CONFLICTS(csp, max_steps) returns a solution or failure
inputs: csp a constraint satisfaction problem
 max_steps the number of steps allowed before giving up

current — an initial complete assignment for csp
for i = 1 to max_steps do
 if current is a solution for csp then return current
 var ← a randomly chosen conflicted variable from csp VARIABLES
 value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)
 set var.value ← value in current
return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial state may be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each variable in turn. The CONFLICTS function counts the number of constraints violated by a particular value, given the rest of the current assignment.

Figure 6.9 A two-step solution using min-conflicts for an 8-queens problem. At each stage, a queen is chosen for reassignment in its column. The number of conflicts (in this case, the number of attacking queens) is shown in each square. The algorithm moves the queen to the min-conflicts square, breaking ties randomly.

heuristic. The algorithm is shown in Figure 6.8 and its application to an 8-queens problem is diagrammed in Figure 6.9.

Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens problem, if you don’t count the initial placement of queens, the run time of min-conflicts is roughly independent of problem size. It solves even the million-queens problem in an average of 50 steps (after the initial assignment). This remarkable observation was the stimulus leading to a great deal of research in the 1990s on local search and the distinction between easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens is easy for local search because solutions are densely distributed throughout the state space. Min-conflicts also works well for hard problems. For example, it has been used to schedule observations for the Hubble Space Telescope, reducing the time taken to schedule a week of observations from three weeks (!) to around 10 minutes.