• **Property Sheet Tooltips:** Controls whether tooltips are displayed on various property sheets appearing throughout the user interface.

• **Tools Palette Tooltips:** Controls how much tooltip information you want displayed for the tool icons in the toolbar.

• **Sample Method:** Generates a sample that will be used for graphical displays. You can specify either Top or Random.

• **Fetch Size:** Specifies the number of observations to download for graphical displays. You can choose either Default or Max.

• **Random Seed:** Specifies the value you want to use to randomly sample observations from your input data.

• **Generate C Score Code:** Creates C score code when you create a report. The default is No.

• **Generate Java Score Code:** Creates Java score code when you create a report. The default is No. If you select Yes, you must enter a filename for the score code package in the Java Score Code Package box.

• **Java Score Code Package:** Identifies the filename of the Java Score Code Package.

• **Grid Processing:** Enables you to use grid processing when you are running data mining flows on grid-enabled servers.

Figure 10.6 shows another parameters dialog in which you can specify a data source. Figure 10.7 provides a closer look at the Properties dialog.

As you can see in the dialog in Figure 10.7, you can set parameters, such as the number of bins, shown as 2 in the figure, but you also can change this to any number desired. Some of the other parameters are categorical, so you either select Yes or No.

After setting the parameters, you then need to build the “Data Miner workflow/Workspace,” selecting the “nodes” needed from the following lists. Figure 10.8 shows a sample flow diagram in SAS-EM.

After a model is created, then it is run, following which, results can be opened. Various kinds of output are illustrated next. A basic stats example is shown in Figure 10.9.

A decision tree analysis example is shown in Figure 10.10.

A lift chart is shown in Figure 10.11.

Figure 10.12 shows how decision tree nodes are expressed.

Figure 10.13 shows one type of profit chart.

A comparison of several DM algorithms is shown in Figure 10.14.

A model comparison of Train and Validate data sets, using several algorithms, is shown in Figure 10.15.

Software Requirements to Run SAS-EM 5.3 Software

To re-create this example, you must have access to SAS Enterprise Miner 5.3 software, either as a client/server application, or as a complete client on your local machine.