232 BINOMIAL COEFFICIENTS

18 Find an alternative form analogous to (5.35) for the product
\[
\binom{r}{k} \binom{r-1/3}{k} \binom{r-2/3}{k},
\]

19 Show that the generalized binomials of (5.58) obey the law
\[
B_t(z) = B_{t-1}(-z)^{-1}.
\]

20 Define a “generalized bloopergeometric series” by the formula
\[
G(\begin{array}{c} a_1, \ldots, a_m \\ b_1, \ldots, b_n \end{array} | z) = \sum_{k \geq 0} \frac{a_1^k \cdots a_m^k}{b_1^k \cdots b_n^k} k!,
\]
using falling powers instead of the rising ones in (5.76). Explain how \(G \) is related to \(F \).

21 Show that Euler’s definition of factorials is consistent with the ordinary definition, by showing that the limit in (5.83) is \(1/(m-1) \cdots (1) \) when \(z = m \) is a positive integer.

22 Use (5.83) to prove the factorial duplication formula:
\[
(x!)! (x - \frac{1}{2})! = (2x)! \left(-\frac{1}{2} \right)! / 2^{2x}.
\]

23 What is the value of \(F(-n, 1; 1) \)?

24 Find \(\sum_k \binom{n}{m+k} 4^k \) by using hypergeometric series.

25 Show that
\[
(a_1 + b_1) F(\begin{array}{c} a_1, a_2, \ldots, a_m \\ b_1 + 1, b_2, \ldots, b_n \end{array} | z) = a_1 F(\begin{array}{c} a_1 + 1, a_2, \ldots, a_m \\ b_1 + 1, b_2, \ldots, b_n \end{array} | z) - b_1 F(\begin{array}{c} a_1, a_2, \ldots, a_m \\ b_1, b_2, \ldots, b_n \end{array} | z).
\]

26 Express the function \(G(z) \) in the formula
\[
F(\begin{array}{c} a_1, \ldots, a_m \\ b_1, \ldots, b_n \end{array} | z) = 1 + G(z)
\]
as a multiple of a hypergeometric series.