242 BINOMIAL COEFFICIENTS

Research problems

95 Let \(q(n) \) be the smallest odd prime factor of the middle binomial coefficient \(\binom{2n}{n} \). According to exercise 36, the odd primes \(p \) that do not divide \(\binom{2n}{n} \) are those for which all digits in \(n \)'s radix \(p \) representation are \((p - 1)/2\) or less. Computer experiments have shown that \(q(n) \leq 11 \) for all \(n < 10^{10000} \), except that \(q(3160) = 13 \).
 a. Is \(q(n) \leq 11 \) for all \(n > 3160 \)?
 b. Is \(q(n) = 11 \) for infinitely many \(n \)?

A reward of \(\$\) is offered for a solution to either (a) or (b).

96 Is \(\binom{2n}{n} \) divisible by the square of a prime, for all \(n > 4 \)?

97 For what values of \(n \) is \(\binom{2n}{n} \equiv (-1)^n \pmod{2n + 1} \)?