have convergent Taylor series about \(x_0 \), that is, if the functions in Eq. (8) are analytic at \(x = x_0 \). Equations (6) and (7) imply that this will be the case when \(P, Q, \) and \(R \) are polynomials. Any singular point of Eq. (1) that is not a regular singular point is called an irregular singular point of Eq. (1).

In the following sections we discuss how to solve Eq. (1) in the neighborhood of a regular singular point. A discussion of the solutions of differential equations in the neighborhood of irregular singular points is more complicated and may be found in more advanced books.

Example 5

In Example 2 we observed that the singular points of the Legendre equation

\[
(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0
\]

are \(x = \pm 1 \). Determine whether these singular points are regular or irregular singular points.

We consider the point \(x = 1 \) first and also observe that on dividing by \(1 - x^2 \) the coefficients of \(y' \) and \(y \) are \(-2x/(1 - x^2)\) and \(\alpha(\alpha + 1)/(1 - x^2) \), respectively. Thus we calculate

\[
\lim_{x \to 1} \frac{-2x}{1 - x^2} = \lim_{x \to 1} \frac{(x - 1)(-2x)}{(1 - x)(1 + x)} = \lim_{x \to 1} \frac{2x}{1 + x} = 1
\]

and

\[
\lim_{x \to 1} \frac{\alpha(\alpha + 1)}{1 - x^2} = \lim_{x \to 1} \frac{(x - 1)^2 \alpha(\alpha + 1)}{(1 - x)(1 + x)} = \lim_{x \to 1} \frac{(x - 1)(-\alpha)(\alpha + 1)}{1 + x} = 0.
\]

Since these limits are finite, the point \(x = 1 \) is a regular singular point. It can be shown in a similar manner that \(x = -1 \) is also a regular singular point.

Example 6

Determine the singular points of the differential equation

\[
2x(x - 2)^2 y'' + 3xy' + (x - 2)y = 0
\]

and classify them as regular or irregular.

Dividing the differential equation by \(2x(x - 2)^2 \), we have

\[
y'' + \frac{3}{2(x - 2)^2} y' + \frac{1}{2x(x - 2)} y = 0
\]

so \(p(x) = Q(x)/P(x) = 3/(2x - 2)^2 \) and \(q(x) = R(x)/P(x) = 1/(2x(x - 2)) \). The singular points are \(x = 0 \) and \(x = 2 \). Consider \(x = 0 \). We have

\[
\lim_{x \to 0} x p(x) = \lim_{x \to 0} x \frac{3}{2(x - 2)^2} = 0,
\]

\[
\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{1}{2x(x - 2)} = 0.
\]