statistics. Interestingly, the ER model can be characterized as a special case of MRG, where all the parameters except for η are set to zero.

MRGs are known to satisfy Definition 2 [Robins et al., 2007]. Therefore, under the probability model defined by Eq. 10, we have that, for any pair of nodes $\{u, v\}$ and any subgraph sample G_S from G, $P(X_{uv} \mid \mathcal{A}(G_S) \setminus \{X_{uv}\}; \theta) = P(X_{uv} \mid N_S(X_{uv}); \theta)$, where $N_S(X_{uv})$ is the set of all variables X_{wz} from G_S such that $|\{u, z\} \cap \{u, v\}| = 1$. Note that while Definition 2 specifies a general class of random graph models, MRGs in the strict sense refer to the class of ERGs defined above.

4.1.2 Higher-Order Models

Higher-order ERG models (HRGs) are readily obtained from MRGs by adding k-triangle counts (for $k \geq 1$) to the Boltzmann distribution of Eq. 10 [Robins et al., 2007]. Moreover, in order to avoid fixing in advance the maximum value of the k parameter, a general formulation has been proposed for HRGs through the alternating k-star and the alternating k-triangle statistics [Snijders et al., 2006], obtaining the following probability model:

$$P(G; \theta) = \frac{1}{Z} \exp \left\{ \eta E(G) + \sigma S^*(G) + \tau T^*(G) \right\}$$ (11)

where, if n is the number of nodes in G and S_k and T_k are the usual k-stars and k-triangle counts, $S^*(G)$ and $T^*(G)$ are defined as $S^*(G) = \sum_{k=1}^{n-1} (-1)^k \frac{S_k}{k!}$ and $T^*(G) = \sum_{k=2}^{n-2} (-1)^k \frac{T_k}{k!}$ (with $\rho \geq 1$ acting as a sort of regularization parameter).

It is known that, under the distribution given by Eq. 11, $P(X_{uv} \mid \mathcal{A}(G_S) \setminus \{X_{uv}\}; \theta) = P(X_{uv} \mid N_S(X_{uv}); \theta)$ [Robins et al., 2007], where $N_S(X_{uv})$ is the set containing any X_{wz} from G_S such that $X_{wz} \neq X_{uv}$, and, for at least one edge $\{s, t\}$, we have that $|\{s, t\} \cap \{u, v\}| = 1$ and $|\{s, t\} \cap \{w, z\}| \neq 0$. Clearly, $N_S(X_{uv}) \subseteq N_S(X_{uv})$, which is why HRGs are ‘higher-order’ than MRGs.

4.2 Watts-Strogatz Model

The WS network model [Watts and Strogatz, 1998] defines a random network as a regular ring lattice which is randomly ‘rewired’ so as to introduce a certain amount of disorder, which typically leads to small-world phenomena. Given nodes u_1, \ldots, u_n, a WS network is generated by constructing a regular ring lattice such that each node is connected to exactly 2δ other nodes. Network edges are then scanned sequentially, and each one of them is rewired with probability β, where, if $i < j$, rewiring an edge $\{u_i, u_j\}$ means to replace it with another edge $\{u_i, u_k\}$ such that $k \neq i$ and u_k is chosen uniformly at random from the set of all nodes that are not already linked to u_i.

Interestingly, the degree distribution corresponding to a WS network G with parameters δ and β takes the following form [Barrat and Weigt, 2000], for any degree $k \geq \delta$:

$$P(k) = \sum_{i=0}^{I} \binom{\delta}{i} (1 - \beta)^i \beta^{k-i} \left(\frac{\delta - i}{k - i}\right)! \exp(-\beta\delta)$$ (12)

where $I = \min\{k - \delta, \delta\}$. Given Eq. 12, we model the conditional distribution of a variable X_{uv} given the remainder of G through the following quantity:

$$P(X_{uv} \mid \mathcal{A}(G) \setminus \{X_{uv}\}) = \frac{P(d_u(G)) P(d_v(G))}{\sum_{x_{uv}} P(d_u(G_{x_{uv}})) P(d_v(G_{x_{uv}}))}$$ (13)

where $d_u(G)$ denotes the degree of node u in G, and each P is implicitly conditional on the values of δ and β. We refer to the conditional random graph model specified in Eq. 13 as the conditional Watts-Strogatz (CWS) model.

For the CWS model, the following proposition follows straightforwardly from Eq. 13:

Proposition 4. The dependence structure of CWS models is Markovian.

A simple estimate of the δ parameter for a data sample $\mathcal{D} = \{(x_{u_1v_1}, G_{u_1v_1}), \ldots, (x_{u_nv_n}, G_{u_nv_n})\}$ is the following:

$$\hat{\delta} = \frac{1}{2n} \sum_{i=1}^{n} d_u(G_{u_i}) + d_v(G_{u_i})$$ (14)

On the other hand, a simple strategy for estimating the rewiring probability by a maximum likelihood approach consists in parameterizing it as a sigmoid function $\beta = \frac{1}{1 + \exp(-\theta_{\beta})}$, where θ_{β} can be optimized by exploiting the derivative $\frac{\partial}{\partial \beta} \sum_{i=1}^{n} \log P(x_{u_i}, \mathcal{A}(G_{u_i}) \setminus \{X_{uv}\}; \delta, \theta_{\beta})$.

4.3 Barabási-Albert Model

The BA model was originally proposed for explaining the scale-free degree distributions often observed in real-world networks [Barabási and Albert, 1999]. In the BA model, the probability $P(u)$ of linking to any particular node u in a network $G = (V, E)$ takes the form $P(u) = \frac{d_u(G)}{\sum_{v \in V} d_v(G)}$ [Albert and Barabási, 2002], where α is a real-valued parameter affecting the shape of the degree distribution. Given $P(u)$, we can use the following expression to characterize the conditional probability of observing edge $\{u, v\}$ given the