whose coefficients are given by
\[p_0 = \lim_{x \to 0} xp(x), \quad q_0 = \lim_{x \to 0} x^3 q(x). \tag{12} \]

Note that these are exactly the limits that must be evaluated in order to classify the singularity as a regular singular point; thus they have usually been determined at an earlier stage of the investigation.

Further, if \(x = 0 \) is a regular singular point of the equation
\[P(x)y'' + Q(x)y' + R(x)y = 0, \tag{13} \]
where the functions \(P, Q, \) and \(R \) are polynomials, then \(xp(x) = xQ(x)/P(x) \) and \(x^2q(x) = x^2R(x)/P(x) \). Thus
\[p_0 = \lim_{x \to 0} x \frac{Q(x)}{P(x)}, \quad q_0 = \lim_{x \to 0} x^2 \frac{R(x)}{P(x)}. \tag{14} \]

Finally, the radii of convergence for the series in Eqs. (9) and (10) are at least equal to the distance from the origin to the nearest zero of \(P \) other than \(x = 0 \) itself.

Example 1

Discuss the nature of the solutions of the equation
\[2x(1 + x)y'' + (3 + x)y' - xy = 0 \]
near the singular points.

This equation is of the form (13) with \(P(x) = 2x(1 + x), Q(x) = 3 + x, \) and \(R(x) = -x \). The points \(x = 0 \) and \(x = -1 \) are the only singular points. The point \(x = 0 \) is a regular singular point, since
\[\lim_{x \to 0} x Q(x) = \lim_{x \to 0} x \frac{3!}{2x(1 + x)} = \frac{3}{2}, \]
\[\lim_{x \to 0} x^2 R(x) = \lim_{x \to 0} x^2 \frac{-x}{2x(1 + x)} = 0. \]

Further, from Eq. (14), \(p_0 = \frac{3}{2} \) and \(q_0 = 0 \). Thus the indicial equation is \(r(r - 1) + \frac{3}{2} = 0 \), and the roots are \(r_1 = 0, r_2 = -\frac{1}{2} \). Since these roots are not equal and do not differ by an integer, there are two linearly independent solutions of the form
\[y_1(x) = 1 + \sum_{n=1}^{\infty} a_n (0)x^n \quad \text{and} \quad y_2(x) = |x|^{-1/2} \left[1 + \sum_{n=1}^{\infty} a_n (-\frac{1}{2})x^n \right] \]
for \(0 < |x| < \rho \). A lower bound for the radius of convergence of each series is 1, the distance from \(x = 0 \) to \(x = -1 \), the other zero of \(P(x) \). Note that the solution \(y_1 \) is bounded as \(x \to 0 \), indeed is analytic there, and that the second solution \(y_2 \) is unbounded as \(x \to 0 \).

The point \(x = -1 \) is also a regular singular point, since
\[\lim_{x \to -1} (x + 1) \frac{Q(x)}{P(x)} = \lim_{x \to -1} \frac{(x + 1)(3 + x)}{2x(1 + x)} = -1, \]
\[\lim_{x \to -1} (x + 1)^2 \frac{R(x)}{P(x)} = \lim_{x \to -1} \frac{(x + 1)^2(-x)}{2x(1 + x)} = 0. \]