\[a(\mu, f) = c'_1 G(\chi_\sigma, t) t^{-s_2} \]

\[\cdot \sum_{|\nu| m} \chi_\sigma(\nu)^{m \nu^2 - 1} a_f \left(\frac{n^2}{\nu^2} \right) |Q(\xi, \xi)|, \]

with \(\chi_\sigma \) the Dirichlet character given by

\[\chi_\sigma(x) = \sigma(x)(-1/x)^{2s} \lambda_{\overline{Q}, \sigma}(x) \]

and \(G(\chi_\sigma, t) \), the Gauss sum given by

\[G(\chi_\sigma, t) = \sum_{\nu \mod t} \chi_\sigma(\nu) e^{2\pi i \nu / t} \]

(here \(c'_1 \) is a nonzero constant depending only on \(s \)).

Then following the well-known methods in automorphic form theory, it is possible to associate a Dirichlet series to the automorphic function \(F_\ell \) (\(|\varphi, L, v, \chi_\sigma, \eta(t)\)). The cases \(k = 3, 4 \) have been studied extensively in [10] and [6], so in the ensuing discussion we assume that \(k \geq 5 \). In particular we let

\[R(\tilde{s}, f) = \sum_{Q \in (|F_\ell| \epsilon(Q) \epsilon_+)} a(Q, f) \left(\frac{1}{\epsilon(Q)} \right) |Q(\Omega, \Omega)|^{-s}, \]

where \(\{(|F_\ell| \epsilon(Q) \epsilon_+) \} \) denotes the set of equivalence classes of \(O(Q, F_1 + F_1)^4 \cap O(Q)_L \) in \((|F_\ell| \epsilon(Q) \epsilon_+ \) and \(\epsilon(Q) \) is the order of the finite subgroup of \(O(Q, F_1 + F_1)^4 \cap O(Q)_L \) which fixes \(Q \).

Then from (6–10) we deduce immediately

Proposition 6.2 [16] (With the same hypotheses as in Theorem 6.1 and \(k \geq 5 \). Let \(\tilde{s} \in \mathbb{C} \) so that \(\text{Re}(\tilde{s}) \) is sufficiently large. Then we have the identity:

\[R(\tilde{s}, f) = d_1 G(\chi_\sigma, t) t^{2s - s_2} 2^s L(\chi_\sigma, 2\tilde{s} + 1 - s_2) \]

\[\sum_{n \in \mathbb{Z} \mid \mathbb{Z} \setminus 1} a_f(-n) M(Q_1, \mathcal{L}, n) |n|^{-s}, \]

where \(M(Q_1, \mathcal{L}, n) \) is the Siegel mass number of the form \(Q_1 \) (\(= Q \) restricted to \(F_1 + F_1 \)) relative to the lattice \(\mathcal{L} \) on the quadric of level \(n \) (i.e. \(M(Q_1, \mathcal{L}, n) = \sum \epsilon_\xi \xi \epsilon_{\xi}^{-1} \), where \(\xi, \ldots, \xi_{\mathbb{N}} \) run through a set of representatives of \(O(Q, F_1 + F_1)^4 \cap O(Q)_L \) orbits in \(\mathcal{L} \) \(X \in \mathbb{R}^{k-2} [Q(X, X) = n] \)) and \(d_1 \) a nonzero constant dependent only on \(s_2 \) (recall here that \(s_2 = s + \frac{1}{2} k - 1 \)). Also \(L(\tilde{s}, \tilde{s}) \) is the classical \(L \) function associated to the Dirichlet character \(\tilde{s} \).

Thus we have expressed \(R(\tilde{s}, f) \) as the product of elementary functions (i.e. \(a_f \)), an \(L \) function, and the Rankin convolution of 2 Dirichlet series (i.e. the Dirichlet series \(D(\tilde{s}, f) = \sum_{n \geq 1} a_f(n) n^{-s} \) and Siegel's zeta function \(\zeta_{-}(Q_1, \mathcal{L}, \tilde{s}) = \sum_{n \in \mathbb{Z} \mid \mathbb{Z} \setminus 1} M(Q_1, \mathcal{L}, n) |n|^{-s}. \)

The analytic nature of the function \(R(\tilde{s}, f) \) can then be determined easily from Proposition 6.1. If we let \(R^*(\tilde{s}, f) = \{ \pi^{-\frac{s_2}{2}} (\tilde{s} - \frac{k}{2} + 2) \} \), then \(R^*(\tilde{s}, f) \) can be analytically continued to the whole \(\tilde{s} \) plane (\(\Gamma \), the gamma function).

Remark 6.2. Using (6–12), it is possible to deduce a type of Euler product expansion of \(R(\tilde{s}, f) \). It suffices to study the possible Euler product properties of the Rankin convolution of \(D(\tilde{s}, f) \) and \(\zeta_{-}(Q_1, \mathcal{L}, \tilde{s}) \). However if \(k \) is even and both \(D(\tilde{s}, f) \) and \(\zeta_{-}(Q_1, \mathcal{L}, \tilde{s}) \) admit the usual Euler product of the \(GL_2 \) theory, then the Rankin
convolution of these series can be expressed as an Euler product with numerator of degree 2 and denominator of degree 4 for almost all primes \(p \). (For suitable choice of \(Q_1 \) and \(\mathfrak{L} \), \(\zeta_-(Q_1, \mathfrak{L}, \mathcal{S}) \) is a finite sum of Euler products of the \(\text{GL}_2 \) theory, see [7].) On the other hand, if \(k \) is odd then \(D(\mathcal{S}, f) \) and \(\zeta_-(Q_1, \mathfrak{L}, \mathcal{S}) \) do not have the usual \(\text{GL}_2 \) type Euler product. However in [18] a modified theory of Euler products is set forth for \(\text{SL}_2 \) automorphic forms of semi-integral weight. In particular if \(f \in S_{2k}(I_0(t), \beta) \) is a Hecke eigenfunction in the sense of [18], then the partial Dirichlet series \(\sum_{n \geq 1} a_n(\lfloor d \rfloor n^2) n^{-s} \) (\(d \), the discriminant of an imaginary quadratic extension of \(\mathcal{O} \)) can be expressed as an Euler product with numerator of degree 1 and denominator of degree 2 for almost all primes \(p \). And it is possible for suitable \(\mathfrak{L} \) to find a similar Euler product for \(\sum_{n \geq 1} M(Q_1, \mathfrak{L}, \lfloor d \rfloor n^2) M(Q_1, \mathfrak{L}, \lfloor d \rfloor n^2) n^{-s} \). Then by purely algebraic methods, one can show that the Rankin convolution \(\sum_{n \geq 1} a_n(\lfloor d \rfloor n^2) \cdot M(Q_1, \mathfrak{L}, \lfloor d \rfloor n^2) n^{-s} \) is an Euler product with numerator of degree 3 and denominator of degree 4 for almost all primes \(p \) (see [16] for the case \(k = 5 \) where \(O(3, 2) \) is locally isomorphic to \(\text{Sp}_2(\mathbb{R}) \)).

Notes. For a complete bibliography on “hyperboloid analysis”, we refer the reader to [21]. Also for an adelic treatment of the Weil representation and automorphic forms, see [4].

We use the terminology that a function \(\phi \) vanishes at a cusp \(\gamma(\infty) = a \) if \((\phi \mid \gamma)(z) = (cz + d)^{-1} \phi(\gamma(z)) \) has an expansion of the form

\[
\sum_{n \geq 0} c_n e^{2\pi \sqrt{-1}(a + c) N z}
\]

with \(c_0 = 0 \) when \(\kappa = 0 \)

(here \(\kappa \) is the ramification of the multiplier at \(a \) and \(N \) is the smallest positive integer so that

\[
\gamma \begin{bmatrix} 1 & N \\ 0 & 1 \end{bmatrix} \gamma^{-1} \in \Gamma_1
\]

\(\Gamma_1 \) the arithmetic group in question) (see [18]).

BIBLIOGRAPHY