9. Consider the Bessel equation of order \(\nu \),

\[
x^2 y'' + xy' + (x^2 - \nu^2) y = 0,
\]

\(x > 0 \).

Take \(\nu \) real and greater than zero.
(a) Show that \(x = 0 \) is a regular singular point, and that the roots of the indicial equation are \(\nu \) and \(-\nu\).
(b) Corresponding to the larger root \(\nu \), show that one solution is

\[
y_1(x) = x^\nu \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m}}{m!(1+\nu)(2+\nu) \cdots (m-1+\nu)(m+\nu)} \right].
\]

(c) If \(2\nu \) is not an integer, show that a second solution is

\[
y_2(x) = x^{-\nu} \left[1 + \sum_{m=1}^{\infty} \frac{\nu^m x^{2m}}{m!(1-\nu)(2-\nu) \cdots (m-1-\nu)(m-\nu)} \right].
\]

Note that \(y_1(x) \to 0 \) as \(x \to 0 \), and that \(y_2(x) \) is unbounded as \(x \to 0 \).
(d) Verify by direct methods that the power series in the expressions for \(y_1(x) \) and \(y_2(x) \) converge absolutely for all \(x \). Also verify that \(y_2 \) is a solution provided only that \(\nu \) is not an integer.

10. In this section we showed that one solution of Bessel’s equation of order zero,

\[
L[y] = x^2 y'' + xy' + x^2 y = 0,
\]

is \(J_0 \), where \(J_0(x) \) is given by Eq. (7) with \(a_0 = 1 \). According to Theorem 5.7.1 a second solution has the form \((x > 0)\)

\[
y_2(x) = J_0(x) \ln x + \sum_{n=1}^{\infty} b_n x^n.
\]

(a) Show that

\[
L[y_2](x) = \sum_{n=2}^{\infty} n(n - 1)b_n x^n + \sum_{n=1}^{\infty} nb_n x^n + \sum_{n=1}^{\infty} b_n x^{n+2} + 2x J_0'(x).
\]

(b) Substituting the series representation for \(J_0(x) \) in Eq. (i), show that

\[
b_1 x + 2^2 b_2 x^2 + \sum_{n=3}^{\infty} (n^2 b_n + b_{n-2}) x^n = -2 \sum_{n=1}^{\infty} \frac{(-1)^n 2nx^{2n}}{2^{2n}(n!)^2}. \tag{ii}
\]

(c) Note that only even powers of \(x \) appear on the right side of Eq. (ii). Show that \(b_1 = b_3 = \cdots = 0 \), \(b_2 = 1/2^2(1!)^2 \), and that

\[
(2n)^2 b_{2n} + b_{2n-2} = -2(-1)^n(2n)/2^{2n}(n!)^2, \quad n = 2, 3, 4, \ldots
\]

Deduce that

\[
b_4 = \left(-\frac{1}{2} + \frac{1}{2} \right), \quad \text{and} \quad b_6 = \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{3} \right).
\]

The general solution of the recurrence relation is \(b_{2n} = (-1)^{n+1} H_n/2^{2n}(n!)^2 \). Substituting for \(b_n \) in the expression for \(y_2(x) \) we obtain the solution given in Eq. (10).

11. Find a second solution of Bessel’s equation of order one by computing the \(c_n(r_2) \) and \(a \) of Eq. (24) of Section 5.7 according to the formulas (19) and (20) of that section. Some guidelines along the way of this calculation are the following. First, use Eq. (24) of this