Find the inverse transform of

\[F(s) = \frac{1 - e^{-2s}}{s^2}. \]

From the linearity of the inverse transform we have

\[f(t) = \mathcal{L}^{-1}\{F(s)\} = \mathcal{L}^{-1}\left\{ \frac{1}{s^2} \right\} - \mathcal{L}^{-1}\left\{ \frac{e^{-2s}}{s^2} \right\} = t - u_2(t)(t - 2). \]

The function \(f \) may also be written as

\[f(t) = \begin{cases} t, & 0 \leq t < 2, \\ 2, & t \geq 2. \end{cases} \]

The following theorem contains another very useful property of Laplace transforms that is somewhat analogous to that given in Theorem 6.3.1.

Theorem 6.3.2 If \(F(s) = \mathcal{L}\{f(t)\} \) exists for \(s > a \geq 0 \), and if \(c \) is a constant, then

\[\mathcal{L}\{e^{ct}f(t)\} = F(s - c), \quad s > a + c. \tag{5} \]

Conversely, if \(f(t) = \mathcal{L}^{-1}\{F(s)\} \), then

\[e^{ct}f(t) = \mathcal{L}^{-1}\{F(s - c)\}. \tag{6} \]

According to Theorem 6.3.2, multiplication of \(f(t) \) by \(e^{ct} \) results in a translation of the transform \(F(s) \) a distance \(c \) in the positive \(s \) direction, and conversely. The proof of this theorem requires merely the evaluation of \(\mathcal{L}\{e^{ct}f(t)\} \). Thus

\[
\mathcal{L}\{e^{ct}f(t)\} = \int_0^\infty e^{-st}e^{ct}f(t)\,dt = \int_0^\infty e^{-(s-c)t}f(t)\,dt = F(s-c),
\]