6.4 Differential Equations with Discontinuous Forcing Functions

Find the solution of the differential equation
\[2y'' + y' + 2y = g(t), \]
(1)

where
\[g(t) = u_5(t) - u_{20}(t) = \begin{cases}
1, & 5 \leq t < 20, \\
0, & 0 \leq t < 5 \text{ and } t \geq 20.
\end{cases} \]
(2)

Assume that the initial conditions are
\[y(0) = 0, \quad y'(0) = 0. \]
(3)

This problem governs the charge on the capacitor in a simple electric circuit with a unit voltage pulse for \(5 \leq t < 20 \). Alternatively, \(y \) may represent the response of a damped oscillator subject to the applied force \(g(t) \).

The Laplace transform of Eq. (1) is
\[2s^2Y(s) - 2sy(0) - 2y'(0) + sY(s) - y(0) + 2Y(s) = \mathcal{L}\{u_5(t)\} - \mathcal{L}\{u_{20}(t)\} = (e^{-5s} - e^{-20s})/s. \]

Introducing the initial values (3) and solving for \(Y(s) \), we obtain
\[Y(s) = \frac{e^{-5s} - e^{-20s}}{s(2s^2 + s + 2)}. \]
(4)

To find \(y = \phi(t) \) it is convenient to write \(Y(s) \) as
\[Y(s) = (e^{-5s} - e^{-20s})H(s), \]
(5)

where
\[H(s) = 1/s(2s^2 + s + 2). \]
(6)

Then, if \(h(t) = \mathcal{L}^{-1}\{H(s)\} \), we have
\[y = \phi(t) = u_5(t)h(t - 5) - u_{20}(t)h(t - 20). \]
(7)