25.20. Find a solution to each game.

\[
\begin{array}{ccc}
2 & -4 & -3 \\
-1 & -2 & 1 \\
0 & 1 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
-2 & 1 & 2 \\
3 & -1 & -2 \\
-1 & 1 & 3 \\
\end{array}
\]

25.21. Consider the game

\[
\begin{array}{cc}
4 & 1 \\
3 & a \\
\end{array}
\]

Find a solution to the game if (i) \(a < 1 \), (ii) \(1 < a < 3 \), (iii) \(a > 3 \).

25.22. Each of two players \(R \) and \(C \) has a dime and a quarter. They each show a coin simultaneously. If the coins are the same, \(R \) wins \(C \)'s coin; if the coins are different, \(C \) wins \(R \)'s coin. Represent the game as a matrix game and find a solution.

25.23. Each of two players \(R \) and \(C \) has a penny, nickel and dime. They each show a coin simultaneously. If the total amount of money shown is even, \(R \) wins \(C \)'s coin; if it is odd, \(C \) wins \(R \)'s coin. Represent the game as a matrix game and find a solution.

THEOREMS

25.24. Suppose every entry in a matrix game \(A \) is increased by an amount \(k \). Show that the value of the game also increases by \(k \), but that the optimum strategies remain the same.

25.25. Show that if every entry in a matrix game is positive, then the value of the game is positive.

Answers to Supplementary Problems

25.17. (i) \(p^0 = (0, 1) \), \(q^0 = (0, 1) \), \(v = 1 \); (ii) \(p^0 = (1, 0) \), \(q^0 = (0, 1) \), \(v = 2 \); (iii) \(p^0 \) can be any strategy, \(q^0 = (1, 0) \), \(v = 1 \).

25.18. (i) \(p^0 = (7/3, 5/3) \), \(q^0 = (4/3, 4/3) \), \(v = 2 \); (ii) \(p^0 = (3/4, 1/4) \), \(q^0 = (5/12, 7/12) \), \(v = 1/4 \); (iii) \(p^0 = (7/8, 1/8) \), \(q^0 = (5/8, 3/8) \), \(v = 3/8 \).

25.19. (i) \(p^0 = (5/8, 3/8) \), \(q^0 = (3/8, 5/8) \), \(v = 1/8 \); (ii) \(p^0 = (5/7, 2/7) \), \(q^0 = (5/7, 2/7) \), \(v = 3/7 \); (iii) \(p^0 = (2/7, 5/7) \), \(q^0 = (4/7, 3/7) \), \(v = 13/7 \).

25.20. (i) \(p^0 = (1/7, 0, 6/7) \), \(q^0 = (5/7, 2/7) \), \(v = 2/7 \); (ii) \(p^0 = (0, 1/3, 2/3) \), \(q^0 = (1/3, 2/3) \), \(v = 1/3 \).

25.21. (i) \(p^0 = (1, 0) \), \(q^0 = (0, 1) \), \(v = 1 \); (ii) \(p^0 = (0, 1) \), \(q^0 = (0, 1) \), \(v = a \); (iii) \(p^0 = \left(\frac{a - 3}{a}, \frac{a}{b} \right) \), \(q^0 = \left(\frac{a - 1}{a}, \frac{1}{b} \right) \), \(v = (4a - 3)/a \).

25.22.

\[
\begin{array}{cc}
10 & -10 \\
-25 & 25 \\
\end{array}
\]

; \(p^0 = (5/7, 2/7) \), \(q^0 = (1/2, 1/2) \), \(v = 0 \).

25.23.

\[
\begin{array}{ccc}
1 & 5 & 10 \\
5 & 1 & 5 \\
10 & -10 & 10 \\
\end{array}
\]

; \(p^0 = (10/11, 0, 1/11) \), \(q^0 = (1/2, 0, 1/2) \), \(v = 0 \).