Step 3 was more than we bargained for; but now that we know what the function \(G \) is, Step 4 is easy—the hypergeometric definition (5.76) gives us the power series expansion:

\[
G(z) = \, _2F_1 \left(\frac{1}{2}, 1 \mid z \right) = \sum_{n \geq 0} \frac{\Gamma(n+2) n! z^n}{n!} = \sum_{n \geq 0} n! z^n
\]

We’ve confirmed the closed form we knew all along, \(g_n = n! \).

Notice that the technique gave the right answer even though \(G(z) \) diverges for all nonzero \(z \). The sequence \(n! \) grows so fast, the terms \(\frac{n!}{z^n} \) approach \(\infty \) as \(n \to \infty \), unless \(z = 0 \). This shows that formal power series can be manipulated algebraically without worrying about convergence.

Example 6: A recurrence that goes all the way back.

Let’s close this section by applying generating functions to a problem in graph theory. A fan of order \(n \) is a graph on the vertices \(\{0, 1, \ldots, n\} \) with \(2n - 1 \) edges defined as follows: Vertex 0 is connected by an edge to each of the other \(n \) vertices, and vertex \(k \) is connected by an edge to vertex \(k + 1 \), for \(1 \leq k < n \). Here, for example, is the fan of order 4, which has five vertices and seven edges.

![Diagram of a fan of order 4]

The problem of interest: How many spanning trees \(f_n \) are in such a graph? A spanning tree is a subgraph containing all the vertices, and containing enough edges to make the subgraph connected yet not so many that it has a cycle. It turns out that every spanning tree of a graph on \(n + 1 \) vertices has exactly \(n \) edges. With fewer than \(n \) edges the subgraph wouldn’t be connected, and with more than \(n \) it would have a cycle; graph theory books prove this.

There are \(\binom{2n-1}{n} \) ways to choose \(n \) edges from among the \(2n - 1 \) present in a fan of order \(n \), but these choices don’t always yield a spanning tree. For instance the subgraph

![Diagram of a subgraph with four edges]

has four edges but is not a spanning tree; it has a cycle from 0 to 4 to 3 to 0, and it has no connection between \(\{1, 2\} \) and the other vertices. We want to count how many of the \(\binom{2n-1}{n} \) choices actually do yield spanning trees.