of salt. Water containing 1 oz/gal of salt flows into Tank 1 at a rate of 1.5 gal/min. The mixture flows from Tank 1 to Tank 2 at a rate of 3 gal/min. Water containing 3 oz/gal of salt also flows into Tank 2 at a rate of 1 gal/min (from the outside). The mixture drains from Tank 2 at a rate of 4 gal/min, of which some flows back into Tank 1 at a rate of 1.5 gal/min, while the remainder leaves the system.

(a) Let \(Q_1(t) \) and \(Q_2(t) \), respectively, be the amount of salt in each tank at time \(t \). Write down differential equations and initial conditions that model the flow process. Observe that the system of differential equations is nonhomogeneous.

(b) Find the values of \(Q_1 \) and \(Q_2 \) for which the system is in equilibrium, that is, does not change with time. Let \(Q^E_1 \) and \(Q^E_2 \) be the equilibrium values. Can you predict which tank will approach its equilibrium state more rapidly?

(c) Let \(x_1 = Q_1(t) - Q^E_1 \) and \(x_2 = Q_2(t) - Q^E_2 \). Determine an initial value problem for \(x_1 \) and \(x_2 \). Observe that the system of equations for \(x_1 \) and \(x_2 \) is homogeneous.

22. Consider two interconnected tanks similar to those in Figure 7.1.6. Tank 1 initially contains 60 gal of water and \(Q^0_1 \) oz of salt, while Tank 2 initially contains 100 gal of water and \(Q^0_2 \) oz of salt. Water containing \(q_1 \) oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The mixture in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank 2 while the remainder leaves the system. Water containing \(q_2 \) oz/gal of salt also flows into Tank 2 from the outside at the rate of 1 gal/min. The mixture in Tank 2 leaves the tank at a rate of 3 gal/min, of which 1 gal/min flows back into Tank 1, while the rest leaves the system.

(a) Draw a diagram that depicts the flow process described above. Let \(Q_1(t) \) and \(Q_2(t) \), respectively, be the amount of salt in each tank at time \(t \). Write down differential equations and initial conditions for \(Q_1 \) and \(Q_2 \) that model the flow process.

(b) Find the equilibrium values \(Q^E_1 \) and \(Q^E_2 \) in terms of the concentrations \(q_1 \) and \(q_2 \).

(c) Is it possible (by adjusting \(q_1 \) and \(q_2 \)) to obtain \(Q^E_1 = 60 \) and \(Q^E_2 = 50 \) as an equilibrium state?

(d) Describe which equilibrium states are possible for this system for various values of \(q_1 \) and \(q_2 \).