Now let’s look again at a sum that has been popping up frequently in this book,

\[S_r(n) = \sum_{0 \leq k < n} k^m. \]

This time we will try to analyze the problem with generating functions, in hopes that it will suddenly become simpler. We will consider \(n \) to be fixed and \(m \) variable; thus our goal is to understand the coefficients of the power series

\[S(z) = S_0(n) + S_1(n) z + S_2(n) z^2 + \cdots = \sum_{m \geq 0} S_m(n) z^m. \]

We know that the generating function for \((1, k, k^2, \ldots)\) is

\[\frac{1}{1 - kz} = \sum_{m \geq 0} k^m z^m, \]

hence

\[S(z) = \sum_{m \geq 0} \sum_{0 \leq k < n} k^m z^m = \sum_{0 \leq k < n} \frac{1}{1 - kz} \]

by interchanging the order of summation. We can put this sum in closed form,

\[S(z) = \frac{1}{z} \left(\frac{1}{z - 1} + \frac{1}{z - 1 - 1} + \cdots + \frac{1}{z - 1 - n + 1} \right) \]

\[= \frac{1}{z} \left(\frac{1}{H_{z-1}} - H_{z-1-n} \right); \quad (7.76) \]

but we know nothing about expanding such a closed form in powers of \(z \).

Exponential generating functions come to the rescue. The egf of our sequence \((S_0(n), S_1(n), S_2(n), \ldots)\) is

\[\hat{S}(z, n) = S_0(n) + S_1(n) \frac{z}{1!} + S_2(n) \frac{z^2}{2!} + \cdots = \sum_{m \geq 0} S_m(n) \frac{z^m}{m!}. \]

To get these coefficients \(S_m(n) \) we can use the egf for \((1, k, k^2, \ldots)\), namely

\[e^{kz} = \sum_{m \geq 0} \frac{k^m}{m!}, \]

and we have

\[\hat{S}(z, n) = \sum_{m \geq 0} \sum_{0 \leq k < n} \frac{k^m}{m!} = \sum_{0 \leq k < n} e^{kz}. \]