Chapter 7. Systems of First Order Linear Equations

\[
\begin{pmatrix}
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{3}{2} & \frac{1}{2} & 0 \\
4 & -2 & 1
\end{pmatrix},
\begin{pmatrix}
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{3}{2} & \frac{1}{2} & 0 \\
-\frac{4}{5} & \frac{7}{5} & -\frac{1}{5}
\end{pmatrix},
\begin{pmatrix}
\frac{7}{10} & -\frac{1}{10} & \frac{3}{10} \\
\frac{1}{10} & -\frac{1}{10} & \frac{1}{10} \\
-\frac{4}{5} & \frac{7}{5} & -\frac{1}{5}
\end{pmatrix}.
\]

The last of these matrices is \(A^{-1} \), a result that can be verified by direct multiplication with the original matrix \(A \).

This example is made slightly simpler by the fact that the original matrix \(A \) had a 1 in the upper left corner \((a_{11} = 1) \). If this is not the case, then the first step is to produce a 1 there by multiplying the first row by \(1/a_{11} \), as long as \(a_{11} \neq 0 \). If \(a_{11} = 0 \), then the first row must be interchanged with some other row to bring a nonzero element into the upper left position before proceeding.

Matrix Functions. We sometimes need to consider vectors or matrices whose elements are functions of a real variable \(t \). We write

\[
x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad A(t) = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix},
\]

respectively.

The matrix \(A(t) \) is said to be continuous at \(t = t_0 \) or on an interval \(\alpha < t < \beta \) if each element of \(A \) is a continuous function at the given point or on the given interval. Similarly, \(A(t) \) is said to be differentiable if each of its elements is differentiable, and its derivative \(dA/dt \) is defined by

\[
dA/dt = \begin{pmatrix} \partial a_{ij} / \partial t \\ \vdots \\ \partial a_{nj} / \partial t \end{pmatrix};
\]

that is, each element of \(dA/dt \) is the derivative of the corresponding element of \(A \). In the same way the integral of a matrix function is defined as

\[
\int_a^b A(t) \, dt = \left(\int_a^b a_{ij}(t) \, dt \right).
\]

For example, if

\[
A(t) = \begin{pmatrix} \sin t & t \\ 1 & \cos t \end{pmatrix},
\]

then

\[
A'(t) = \begin{pmatrix} \cos t & 1 \\ 0 & -\sin t \end{pmatrix}, \quad \int_0^\pi A(t) \, dt = \left(\frac{2}{\pi} \pi^2/2 \right).
\]

Many of the rules of elementary calculus extend easily to matrix functions; in particular,

\[
\frac{d}{dt} (CA) = C \frac{dA}{dt}, \quad \text{where } C \text{ is a constant matrix;}
\]

\[
\frac{d}{dt} (A + B) = \frac{dA}{dt} + \frac{dB}{dt};
\]

\[
\frac{d}{dt} (AB) = A \frac{dB}{dt} + A \frac{dA}{dt}.
\]