13. \(x^{(1)}(t) = (2 \sin t, \sin t), \quad x^{(2)}(t) = (\sin t, 2 \sin t) \)

14. Let

\[
x^{(1)}(t) = \begin{pmatrix} e^t \\ te^t \end{pmatrix}, \quad x^{(2)}(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}.
\]

Show that \(x^{(1)}(t) \) and \(x^{(2)}(t) \) are linearly dependent at each point in the interval \(0 \leq t \leq 1 \). Nevertheless, show that \(x^{(1)}(t) \) and \(x^{(2)}(t) \) are linearly independent on \(0 \leq t \leq 1 \).

In each of Problems 15 through 24 find all eigenvalues and eigenvectors of the given matrix.

15. \[
\begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix}
\]

16. \[
\begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}
\]

17. \[
\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}
\]

18. \[
\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}
\]

19. \[
\begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}
\]

20. \[
\begin{pmatrix} -3 & 3/4 \\ -5 & 1 \end{pmatrix}
\]

21. \[
\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix}
\]

22. \[
\begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}
\]

23. \[
\begin{pmatrix} 11/9 & -2/9 & 8/9 \\ -2/9 & 2/9 & 10/9 \\ 8/9 & 10/9 & 5/9 \end{pmatrix}
\]

24. \[
\begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}
\]

Problems 25 through 29 deal with the problem of solving \(Ax = b \) when \(\det A = 0 \).

25. Suppose that, for a given matrix \(A \), there is a nonzero vector \(x \) such that \(Ax = 0 \). Show that there is also a nonzero vector \(y \) such that \(A^*y = 0 \).

26. Show that \((Ax, y) = (x, A^*y) \) for any vectors \(x \) and \(y \).

27. Suppose that \(\det A = 0 \) and that \(Ax = b \) has solutions. Show that \((b, y) = 0 \), where \(y \) is any solution of \(A^*y = 0 \). Verify that this statement is true for the set of equations in Example 2.

\textit{Hint:} Use the result of Problem 26.

28. Suppose that \(\det A = 0 \), and that \(x = x^{(0)} \) is a solution of \(Ax = b \). Show that if \(\xi \) is a solution of \(A\xi = 0 \) and \(\alpha \) is any constant, then \(x = x^{(0)} + \alpha \xi \) is also a solution of \(Ax = b \).

29. Suppose that \(\det A = 0 \) and that \(y \) is a solution of \(A^*y = 0 \). Show that if \((b, y) = 0 \) for every such \(y \), then \(Ax = b \) has solutions. Note that this is the converse of Problem 27; the form of the solution is given by Problem 28.

30. Prove that \(\lambda = 0 \) is an eigenvalue of \(A \) if and only if \(A \) is singular.

31. Prove that if \(A \) is Hermitian, then \((Ax, y) = (x, Ay) \), where \(x \) and \(y \) are any vectors.

32. In this problem we show that the eigenvalues of a Hermitian matrix \(A \) are real. Let \(x \) be an eigenvector corresponding to the eigenvalue \(\lambda \).

(a) Show that \((Ax, x) = (x, Ax) \). \textit{Hint:} See Problem 31.

(b) Show that \(\lambda(x, x) = \lambda(x, x) \). \textit{Hint:} Recall that \(Ax = \lambda x \).

(c) Show that \(\lambda = \bar{\lambda} \); that is, the eigenvalue \(\lambda \) is real.

33. Show that if \(\lambda_1 \) and \(\lambda_2 \) are eigenvalues of a Hermitian matrix \(A \), and if \(\lambda_1 \neq \lambda_2 \), then the corresponding eigenvectors \(x^{(1)} \) and \(x^{(2)} \) are orthogonal.

\textit{Hint:} Use the results of Problems 31 and 32 to show that \((\lambda_1 - \lambda_2)(x^{(1)}, x^{(2)}) = 0 \).