2.3 TRAINING

All model variables except \(S \) are observed during training. Because all other variables are conditionally independent of \(S \) given \(P \) and \(P \) is observed, we can factor the full model into a latent variable model composed of \(S \) and \(P \), and a fully observed model containing the rest of the parameters. We can learn the parameters of \(S \) and \(P \) separately from the rest, simplifying training.

The production process is a hidden Markov model (HMM) (Rabiner, 1990), where \(S_t \) is the latent state and \(P_{t}^{1}, \ldots, P_{t}^{N} \) are the emissions. The parameters of the HMM are the initial state probabilities \(P(S_0) = \text{Multinomial}(\eta_1, \ldots, \eta_M) \), the state transition probabilities \(P(S_t | S_{t-1} = s) = \text{Multinomial}(\pi_1^s, \ldots, \pi_M^s) \), and the inflated Poisson parameters \(P(P_t^i = k > 0 | S_t = s) = \nu_s^i \cdot \text{Pois}(k - 1; \lambda_i^s) \).

At training time, we observe \(P_t \). We can then estimate \(\Phi \) in the usual way using the Expectation Maximization (EM) algorithm. We initialized the EM algorithm as follows: the \(\eta \) and \(\pi \) parameters are set to \(1/M \), values of \(\nu \) are drawn from a Uniform(0, 1), and \(\lambda \) parameters are drawn from a Uniform(0, 10).

The “unobserved loss” probabilities \(\ell^i \) are estimated as the number of unobserved losses of units of type \(i \) divided by the number of unit-epochs (analogous to human-years) during which a unit of that type existed.

For unit types that were present in at least 100 unit-epochs, \(\ell^i \) was estimated using additive smoothing as \(\hat{\ell}^i = \frac{d^i + 1}{\hat{N} + N} \) where \(d^i \) is the number of unobserved losses of unit type \(i \) and \(\hat{N} \) is the number of unit-epochs for type \(i \). The smoothing ensures that all unit types have non-zero \(\ell^i \) even if there were no unobserved losses in the training data. For types that were not present in at least 100 unit-epochs, the median estimate was used.

The functions \(\hat{\ell}^i \) giving the parameters of the distributions of \(O_{t}^{i} \) are learned via logistic regression with a maximum likelihood objective using the R package aod (Lesnoff et al., 2010). We fit a \(\hat{\mu}^i \) parameter for unit type \(i \) only if a unit of that type was observed on at least 100 occasions in the dataset. We fit a \(\hat{\rho}^i \) parameter only if the unit type met the condition for \(\hat{\mu}^i \) and there were at least two of the unit type present (but not necessarily observed) on at least 100 occasions. The reason for the condition on \(\hat{\rho} \) is that if it is rare for more than one instance of the unit to exist, then there is little dispersion in the data, and the estimate of \(\hat{\rho}^i \) will be near 0. In this case, \(\hat{\rho}^i \) would merely be modeling the tendency not to build more than one unit, which is properly the job of \(P_t \). For types that did not have enough data for \(\hat{\mu} \) or \(\hat{\rho}, \) the median of the estimated regression coefficients are used.

2.4 INFERENCE

We denote the subset of latent variables for a slice \(t \) as \(X_t = \{ S_t, P_t^1, \ldots, P_t^N, U_t^1, \ldots, U_t^N \} \), and the observed variables as \(Y_t = \{ E_t, K_t^1, \ldots, K_t^N, O_t^1, \ldots, O_t^N \} \). We use the lowercase \(y_t \) and \(x_t \) to denote instantiations of these variables (i.e., \(y_t \) refers to the evidence at time \(t \)). Because each \(U_t^i \) is conditioned on \(S_t \), and \(S_t \) and \(U_t^i \) are Markovian, an exact filtering pass would require representing the forward message \(\alpha_t = P(S_t, U_t^1, \ldots, U_t^N) \). This is intractable for even a modest number of types, since the size of the joint distribution is \(M^{N_{\text{max}}} \). However, a key observation is that, given the history of the strategy state, \(S_{0:t} = (S_0, \ldots, S_t) \), the model up to time \(t \) decomposes into \(N \) independent HMMs, each tracking the count of a single type. We leverage this structure by employing a Rao-Blackwellized particle filter (RBPF) for approximate inference (Doucet et al., 2000; Murphy, 2000).

In our application of RBPF, we draw particles of \(S_{0:t} \), and compute \(P(U_t^i | S_{0:t}) \) analytically via standard HMM filtering. Following an importance sampling framework, particles are generated at each time step from a proposal distribution \(Q(S_t) \). We use the state transition model for our proposal, \(Q(S_t) = P(S_t | s_{t-1}) \). While this choice ignores recent evidence at time \(t \), it is computationally efficient to sample, and there are often periods of no evidence, anyway.

At \(t = 0 \) we draw \(R \) particles from the initial state prior \(s_{0}^{1}, \ldots, s_{0}^{R} \sim P(S_0) \). Each particle has an importance weight \(w_t^r = \phi(s_t^r) / Q(s_t^r) \), where \(\phi(s_t^r) \) is the probability of the particle’s value \(s_t^r \) given by the full model (up to normalization). At \(t = 0 \), \(w_0^r = (P(y_0 | s_t^r) P(s_t^r) / Q(s_t^r) \). For \(t > 0 \), each particle generates its next value of the state \(s_{t}^r \sim Q(S_t) = P(S_t | s_{t-1}^r) \). We then update its weight using the ratio:

\[
\hat{w}_t^r = \frac{P(Y_t = y_t | s_t^r, s_{0:t}, s_{0:t-1}^r) P(S_t = s_t^r | s_{t-1} = s_{t-1}^r)}{P(S_t = s_t^r | s_{t-1} = s_{t-1}^r)}
\]

The new weight for particle \(r \) is then \(\hat{w}_t^r = w_t^{r-1} \hat{w}_t^r \).

Because our proposal distribution is identical to \(P(S_t | s_{t-1}) \) (canceling out the denominator), we are only interested in the likelihood term of the numerator, \(P(Y_t = y_t | s_{t-1} = s_t^r, s_{0:t-1}^r) \), which factors as

\[
\prod_{i=1}^{N} \left[P(U_t^i | U_{t-1}^i, P_t^i, K_{t-1}^i) P(U_{t-1}^i) \right]
\]

\[
\cdot P(P_t^i | S_t = s_t^r) P(O_t^i | U_t^i, E_t^i)
\]

\(P(U_{t-1}^i) \) is a forward-pass message that captures the posterior marginal distribution over the counts of unit type \(i \) at time \(t - 1 \). After we weight a sample, we