Similarly, corresponding to \(r_2 = -1 \), we find that \(\xi_2 = -2\xi_1 \), so the eigenvector is
\[
\xi^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.
\] (10)

The corresponding solutions of the differential equation are
\[
x^{(1)}(t) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{3t}, \quad x^{(2)}(t) = \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t}.
\] (11)

The Wronskian of these solutions is
\[
W[x^{(1)}, x^{(2)}](t) = \begin{vmatrix} e^{3t} & e^{-t} \\ 2e^{3t} & -2e^{-t} \end{vmatrix} = -4e^{2t},
\] (12)
which is never zero. Hence the solutions \(x^{(1)} \) and \(x^{(2)} \) form a fundamental set, and the general solution of the system (5) is
\[
x = c_1 x^{(1)}(t) + c_2 x^{(2)}(t)
\] (13)
where \(c_1 \) and \(c_2 \) are arbitrary constants.

To visualize the solution (13) it is helpful to consider its graph in the \(x_1 x_2 \) plane for various values of the constants \(c_1 \) and \(c_2 \). We start with \(x = c_1 x^{(1)}(t) \), or in scalar form
\[
x_1 = c_1 e^{3t}, \quad x_2 = 2c_1 e^{3t}.
\]
By eliminating \(t \) between these two equations, we see that this solution lies on the straight line \(x_2 = 2x_1 \); see Figure 7.5.2a. This is the line through the origin in the direction of the eigenvector \(\xi^{(1)} \). If we look on the solution as the trajectory of a moving particle, then the particle is in the first quadrant when \(c_1 > 0 \) and in the third quadrant when \(c_1 < 0 \). In either case the particle departs from the origin as \(t \) increases. Next consider \(x = c_2 x^{(2)}(t) \), or
\[
x_1 = c_2 e^{-t}, \quad x_2 = -2c_2 e^{-t}.
\]
This solution lies on the line \(x_2 = -2x_1 \), whose direction is determined by the eigenvector \(\xi^{(2)} \). The solution is in the fourth quadrant when \(c_2 > 0 \) and in the second quadrant when \(c_2 < 0 \), as shown in Figure 7.5.2a. In both cases the particle moves toward the origin as \(t \) increases. The solution (13) is a combination of \(x^{(1)}(t) \) and \(x^{(2)}(t) \). For large \(t \) the term \(c_1 x^{(1)}(t) \) is dominant and the term \(c_2 x^{(2)}(t) \) becomes negligible. Thus all solutions for which \(c_1 \neq 0 \) are asymptotic to the line \(x_2 = 2x_1 \) as \(t \to \infty \). Similarly, all solutions for which \(c_2 \neq 0 \) are asymptotic to the line \(x_2 = -2x_1 \) as \(t \to -\infty \). The graphs of several solutions are shown in Figure 7.5.2a. The pattern of trajectories in this figure is typical of all second order systems \(x = Ax \) for which the eigenvalues are real and of opposite signs. The origin is called a saddle point in this case. Saddle points are always unstable because almost all trajectories depart from them as \(t \) increases.

In the preceding paragraph we have described how to draw by hand a qualitatively correct sketch of the trajectories of a system such as Eq. (5) once the eigenvalues and eigenvectors have been determined. However, to produce a detailed and accurate drawing, such as Figure 7.5.2a and other figures that appear later in this chapter, a computer is extremely helpful, if not indispensable.