As an alternative to Figure 7.5.2a one can also plot x_1 or x_2 as a function of t; some typical plots of x_1 versus t are shown in Figure 7.5.2b, and those of x_2 versus t are similar. For certain initial conditions it follows that $c_1 = 0$ in Eq. (13), so that $x_1 = c_2 e^{-t}$ and $x_1 \to 0$ as $t \to \infty$. One such graph is shown in Figure 7.5.2b, corresponding to a trajectory that approaches the origin in Figure 7.5.2a. For most initial conditions, however, $c_1 \neq 0$ and x_1 is given by $x_1 = c_1 e^{3t} + c_2 e^{-t}$. Then the presence of the positive exponential term causes x_1 to grow exponentially in magnitude as t increases. Several graphs of this type are shown in Figure 7.5.2b, corresponding to trajectories that depart from the neighborhood of the origin in Figure 7.5.2a. It is important to understand the relation between parts (a) and (b) of Figure 7.5.2 and other similar figures that appear later, since one may want to visualize solutions either in the x_1-x_2 plane or as functions of the independent variable t.

Consider the system

$$x' = \begin{pmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{pmatrix}x.$$ \hfill (14)

Draw a direction field for this system; then find its general solution and plot several trajectories in the phase plane.

The direction field for the system (14) in Figure 7.5.3 shows clearly that all solutions approach the origin. To find the solutions assume that $x = \xi e^{rt}$; then we obtain the algebraic system

$$\begin{pmatrix} -3 - r & \sqrt{2} \\ \sqrt{2} & -2 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$ \hfill (15)