variance by analyzing the mutual dependencies among them:

\[
E(F^2_n) = E\left(\left(\sum_{k=1}^{n} F_{n,k} \right)^2 \right) = E\left(\sum_{j=1}^{n} \sum_{k=1}^{n} F_{n,j} F_{n,k} \right)
\]

\[
= \sum_{j=1}^{n} \sum_{k=1}^{n} E(F_{n,j} F_{n,k}) = \sum_{i \leq k \leq n} E(F^2_{n,k}) + 2 \sum_{1 \leq j < k \leq n} E(F_{n,j} F_{n,k})
\]

(We used a similar trick when we derived (2.33) in Chapter 2.) Now \(F^2_{n,k} = F_{n,k} \), since \(F_{n,k} \) is either 0 or 1; hence \(E(F^2_{n,k}) = E(F_{n,k}) = 1/n \) as before. And if \(j < k \) we have \(E(F_{n,j} F_{n,k}) = \Pr(\pi \text{ has both } j \text{ and } k \text{ as fixed points}) = (n-2)!/n! = 1/n(n-1) \). Therefore

\[
E(F^2_n) = \frac{n}{n} + \frac{n}{n(n-1)} = 2, \quad \text{for } n \geq 2.
\] (8.24)

(As a check when \(n = 3 \), we have \(\frac{2}{6} 0^2 + \frac{3}{6} 1^2 + \frac{1}{6} 2^2 + \frac{1}{6} 3^2 = 2 \).) The variance is \(E(F^2_n) - (E(F_n))^2 = 1 \), so the standard deviation (like the mean) is \(1 \). “A random permutation of \(n \) elements has \(1 \) fixed points.”

8.3 Probability Generating Functions

If \(X \) is a random variable that takes only nonnegative integer values, we can capture its probability distribution nicely by using the techniques of Chapter 7. The probability generating function or pgf of \(X \) is

\[
G_X(z) = \sum_{k \geq 0} \Pr(X = k) z^k.
\] (8.25)

This power series in \(z \) contains all the information about the random variable \(X \). We can also express it in two other ways:

\[
G_X(z) = \sum_{\omega \in \Omega} \Pr(\omega) z^{X(\omega)} = E(z^X).
\] (8.26)

The coefficients of \(G_X(z) \) are nonnegative, and they sum to 1; the latter condition can be written

\[
G_X(1) = 1.
\] (8.27)

Conversely, any power series \(G(z) \) with nonnegative coefficients and with \(G(1) = 1 \) is the pgf of some random variable.