The nicest thing about pgf’s is that they usually simplify the computation of means and variances. For example, the mean is easily expressed:

\[EX = \sum_{k \geq 0} k \cdot \Pr(X = k) \]
\[= \sum_{k \geq 0} \Pr(X = k) \cdot k z^{k-1} \bigg|_{z=1} \]
\[= G_X(1). \quad (8.28) \]

We simply differentiate the pgf with respect to \(z \) and set \(z = 1 \).

The variance is only slightly more complicated:

\[E(X^2) = \sum_{k \geq 0} k^2 \cdot \Pr(X = k) \]
\[= \sum_{k \geq 0} \Pr(X = k) \cdot (k(k-1) z^{k-2} + k z^{k-1}) \bigg|_{z=1} = G''_X(1) + G'_X(1). \]

Therefore

\[VX = G''_X(1) + G'_X(1) - G'_X(1)^2. \quad (8.29) \]

Equations (8.28) and (8.29) tell us that we can compute the mean and variance if we can compute the values of two derivatives, \(G''_X(1) \) and \(G'_X(1) \). We don’t have to know a closed form for the probabilities; we don’t even have to know a closed form for \(G_X(z) \) itself.

It is convenient to write

\[\text{Mean}(G) = G'(1), \quad (8.30) \]
\[\text{Var}(G) = G''(1) + G'(1) - G''(1)^2, \quad (8.31) \]

when \(G \) is any function, since we frequently want to compute these combinations of derivatives.

The second-nicest thing about pgf’s is that they are comparatively simple functions of \(z \), in many important cases. For example, let’s look at the uniform distribution of order \(n \), in which the random variable takes on each of the values \(\{0, 1, \ldots, n-1\} \) with probability \(1/n \). The pgf in this case is

\[U_n(z) = \frac{1}{n} \sum_{i=0}^{n-1} z^i = \frac{1 - z^n}{n(1 - z)}, \quad \text{for } n \geq 1. \quad (8.32) \]

We have a closed form for \(U_n(z) \) because this is a geometric series.

But this closed form proves to be somewhat embarrassing: When we plug in \(z = 1 \) (the value of \(z \) that’s most critical for the pgf), we get the undefined ratio \(0/0 \), even though \(U_n(z) \) is a polynomial that is perfectly well defined at any value of \(z \). The value \(U_n(1) = 1 \) is obvious from the non-closed form