that includes entries like this:

\[1 < \log \log n < \log n < n^\varepsilon < n^{\varepsilon} < n^{\log n} < c^n < n^n < c^n. \]

(Here \(\varepsilon \) and \(c \) are arbitrary constants with \(0 < \varepsilon < 1 < c \).)

All functions listed here, except 1, go to infinity as \(n \) goes to infinity. Thus when we try to place a new function in this hierarchy, we're not trying to determine whether it becomes infinite but rather how fast.

It helps to cultivate an expansive attitude when we're doing asymptotic analysis: We should think big, when imagining a variable that approaches infinity. For example, the hierarchy says that \(\log n < n^{0.0001} \), this might seem wrong if we limit our horizons to teeny-tiny numbers like one googol, \(n = 10^{100} \). For in that case, \(\log n = \log 10^{100} = 100 \), while \(n^{0.0001} = 100^{0.01} \approx 1.0233 \). But if we go up to a googolplex, \(n = 10^{10^{100}} \), then \(\log n = \log 10^{10^{100}} = 10^{10^{100}} \) pales in comparison with \(n^{0.0001} = 10^{10^{0.01}} \).

Even if \(\varepsilon \) is extremely small (smaller than, say, \(1/10^{10^{100}} \)), the value of \(\log n \) will be much smaller than the value of \(n^\varepsilon \) if \(n \) is large enough. For if we set \(n = 10^{10^{10^k}} \), where \(k \) is so large that \(\varepsilon \geq 10^{-k} \), we have \(\log n = 10^{10^k} \) but \(n^\varepsilon \geq 10^{10^{10^k}} \). The ratio \(\log n/n^\varepsilon \) therefore approaches zero as \(n \to \infty \).

The hierarchy shown above deals with functions that go to infinity. Often, however, we're interested in functions that go to zero, so it's useful to have a similar hierarchy for those functions. We get one by taking reciprocals, because when \(f(n) \) and \(g(n) \) are never zero we have

\[f(n) \prec g(n) \iff \frac{1}{g(n)} > \frac{1}{f(n)}. \]

Thus, for example, the following functions (except 1) all go to zero:

\[\frac{1}{c^n} < \frac{1}{n^n} < \frac{1}{n^{\log n}} < \frac{1}{n^\varepsilon} < \frac{1}{n^\varepsilon} < \frac{1}{\log n} < \frac{1}{\log \log n} < 1. \]

Let's look at a few other functions to see where they fit in. The number \(\pi(n) \) of primes less than or equal to \(n \) is known to be approximately \(n/\ln n \). Since \(1/n^\varepsilon \prec 1/\ln n \sim 1 \), multiplying by \(n \) tells us that

\[n^{1-\varepsilon} \prec \pi(n) \prec n. \]

We can in fact generalize (9.4) by noticing, for example, that

\[n^{\alpha_1}(\log n)^{\beta_2}(\log \log n)^{\alpha_3} \prec n^{\beta_1}(\log n)^{\beta_2}(\log \log n)^{\beta_3}. \]

\[\iff (\alpha_1, \alpha_2, \alpha_3) < (\beta_1, \beta_2, \beta_3). \]

(9.6)

Here \((\alpha_1, \alpha_2, \alpha_3) < (\beta_1, \beta_2, \beta_3)\) means lexicographic order (dictionary order); in other words, either \(a_i < \beta_i \) or \(\alpha_i = \beta_i \) and \(\alpha_2 < \beta_2 \), or \(\alpha_i = \beta_i \) and \(\alpha_2 = \beta_2 \) and \(\alpha_3 < \beta_3 \).