if at all. But the right-hand column shows that $P(n)$ is very close indeed to $\sqrt{\pi n}/2$. Thus we can characterize the behavior of $P(n)$ much better if we can derive formulas of the form

$$P(n) = \sqrt{\pi n}/2 + O(1),$$

or even sharper estimates like

$$P(n) = \sqrt{\pi n}/2 - \frac{1}{2} + O(1/\sqrt{n}).$$

Stronger methods of asymptotic analysis are needed to prove O-results, but the additional effort required to learn these stronger methods is amply compensated by the improved understanding that comes with O-bounds.

Moreover, many sorting algorithms have running times of the form

$$T(n) = An \log n + Bn + O(\log n)$$

for some constants A and B. Analyses that stop at $T(n) \sim An \log n$ don’t tell the whole story, and it turns out to be a bad strategy to choose a sorting algorithm based just on its A value. Algorithms with a good ‘A’ often achieve this at the expense of a bad ‘B’. Since $\log n$ grows only slightly faster than n, the algorithm that’s faster asymptotically (the one with a slightly smaller A value) might be faster only for values of n that never actually arise in practice. Thus, asymptotic methods that allow us to go past the first term and evaluate B are necessary if we are to make the right choice of method.

Before we go on to study O, let’s talk about one more small aspect of mathematical style. Three different notations for logarithms have been used in this chapter: \lg, \ln, and \log. We often use ‘\lg’ in connection with computer methods, because binary logarithms are often relevant in such cases; and we often use ‘\ln’ in purely mathematical calculations, since the formulas for natural logarithms are nice and simple. But what about ‘\log’? Isn’t this the “common” base-10 logarithm that students learn in high school-the “common” logarithm that turns out to be very uncommon in mathematics and computer science? Yes; and many mathematicians confuse the issue by using ‘\log’ to stand for natural logarithms or binary logarithms. There is no universal agreement here. But we can usually breathe a sigh of relief when a logarithm appears inside O-notation, because O ignores multiplicative constants. There is no difference between $O(\log n)$, $O(\ln n)$, and $O(\log n)$, as $n \to \infty$; similarly, there is no difference between $0 (\lg \lg n)$, $0 (\ln \ln n)$, and $O(\log \log n)$. We get to choose whichever we please; and the one with ‘\log’ seems friendlier because it is more pronounceable. Therefore we generally use ‘\log’ in all contexts where it improves readability without introducing ambiguity.