8.3 The Runge-Kutta Method

435

(c) Show that if \(f(t, y) \) is linear in \(t \) and \(y \), then \(e_{n+1} = \phi'''(t_n)h^3/6 \), where \(t_n < t_n < t_{n+1} \).

Hint: What are \(f_{1n}, f_{2n}, \) and \(f_{3n} \)?

15. Consider the improved Euler method for solving the illustrative initial value problem \(y' = 1 + t + 4y, \quad y(0) = 1 \). Using the result of Problem 14(c) and the exact solution of the initial value problem, determine \(e_{n+1} \) and a bound for the error at any step on \(0 \leq t \leq 1 \). Compare this error with the one obtained in Eq. (26) of Section 8.1 using the Euler method. Also obtain a bound for \(e_1 \) for \(h = 0.1 \) and compare it with Eq. (27) of Section 8.1.

In each of Problems 16 and 17 use the actual solution \(\phi(t) \) to determine \(e_{n+1} \) and a bound for \(e_n \) at any step on \(0 \leq t \leq 1 \) for the improved Euler method for the given initial value problem. Also obtain a bound for \(e_1 \) for \(h = 0.1 \) and compare it with the similar estimate for the Euler method and with the actual error using the improved Euler method.

16. \(y' = 2y - 1, \quad y(0) = 1 \)
17. \(y' = 0.5 - t + 2y, \quad y(0) = 1 \)

In each of Problems 18 through 21 carry out one step of the Euler method and of the improved Euler method using the step size \(h = 0.1 \). Suppose that a local truncation error no greater than 0.0025 is required. Estimate the step size that is needed for the Euler method to satisfy this requirement at the first step.

18. \(y' = 0.5 - t + 2y, \quad y(0) = 1 \)
19. \(y' = 5t - 3\sqrt{y}, \quad y(0) = 2 \)
20. \(y' = \sqrt{t + y}, \quad y(0) = 3 \)
21. \(y' = (y^2 + 2ty)/(3 + t^2), \quad y(0) = 0.5 \)

22. The modified Euler formula for the initial value problem \(y' = f(t, y), \quad y(t_0) = y_0 \) is given by

\[
y_{n+1} = y_n + hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hf(t_n, y_n)).
\]

Following the procedure outlined in Problem 14, show that the local truncation error in the modified Euler formula is proportional to \(h^3 \).

In each of Problems 23 through 26 use the modified Euler formula of Problem 22 with \(h = 0.05 \) to compute approximate values of the solution of the given initial value problem at \(t = 0.1, 0.2, 0.3, \) and 0.4. Compare the results with those obtained in Problems 1 through 4.

23. \(y' = 3 + t - y, \quad y(0) = 1 \)
24. \(y' = 5t - 3\sqrt{y}, \quad y(0) = 2 \)
25. \(y' = 2y - 3t, \quad y(0) = 1 \)
26. \(y' = 2t + e^{-t}, \quad y(0) = 1 \)

27. Show that the modified Euler formula of Problem 22 is identical to the improved Euler formula of Eq. (5) for \(y' = f(t, y) \) if \(f \) is linear in both \(t \) and \(y \).

8.3 The Runge-Kutta Method

In preceding sections we have introduced the Euler formula, the backward Euler formula, and the improved Euler formula as ways to solve the initial value problem

\[
y' = f(t, y), \quad y(t_0) = y_0 \quad (1)
\]