Problem 5: An infinite sum.

We turn now to an asymptotic question posed by Solomon Golomb [122]: What is the approximate value of

\[S_n = \sum_{k \geq 1} \frac{1}{kN_n(k)^2} \]

(9.51)

where \(N_n(k) \) is the number of digits required to write \(k \) in radix \(n \) notation?

First let’s try again for a ballpark estimate. The number of digits, \(N_n(k) \), is approximately \(\log_n k = \log k / \log n \); so the terms of this sum are roughly \((\log n)^2 / k(\log k)^2 \). Summing on \(k \) gives

\[\int_2^\infty \frac{dx}{x(\log x)^2} = \frac{1}{\ln 2} \int_2^\infty \frac{1}{1 + \frac{1}{(\log x)^2}} = \frac{1}{\ln 2} \]

Therefore we expect \(S_n \) to be about \(C(\log n)^2 \), for some constant \(C \).

Hand-wave analyses like this are useful for orientation, but we need better estimates to solve the problem. One idea is to express \(N_n(k) \) exactly:

\[N_n(k) = \left\lfloor \log_n k \right\rfloor + 1 \]

(9.52)

Thus, for example, \(k \) has three radix \(n \) digits when \(n^2 \leq k < n^3 \), and this happens precisely when \(\left\lfloor \log_n k \right\rfloor = 2 \). It follows that \(N_n(k) > \log_n k \), hence

\[S_n = \sum_{k \geq 1} 1/kN_n(k)^2 < 1 + (\log n)^2 \sum_{k \geq 2} 1/k(\log k)^2 \]

Proceeding as in Problem 1, we can try to write \(N_n(k) = \log_n k + 0(1) \) and substitute this into the formula for \(S_n \). The term represented here by \(0(1) \) is always between 0 and 1, and it is about \(\frac{1}{2} \) on the average, so it seems rather well-behaved. But still, this isn’t a good enough approximation to tell us about \(S_n \); it gives us zero significant figures (that is, high relative error) when \(k \) is small, and these are the terms that contribute the most to the sum. We need a different idea.

The key (as in Problem 4) is to use our manipulative skills to put the sum into a more tractable form, before we resort to asymptotic estimates. We can introduce a new variable of summation, \(m = N_n(k) \):

\[S_n = \sum_{k, m \geq 1} \frac{[m = N_n(k)]}{km^2} \]

\[= \sum_{k, m \geq 1} \frac{[n^{-1}m \leq k < n^m]}{km^2} \]

\[= \sum_{m \geq 1} \frac{1}{m^2} (H_{n^m - 1} - H_{n^{m-1} - 1}) \]