In other words, we need to have

\[(-l)^m B_m = B_m(1) = B_m(0), \quad \text{for } m > 1. \tag{9.75} \]

This is a bit embarrassing, because \(B_m(0) \) is obviously equal to \(B_m \), not to \((-l)^m B_m \). But there’s no problem really, because \(m > 1 \); we know that \(B_m \) is zero when \(m \) is odd. (Still, that was a close call.)

To complete the proof of Euler’s summation formula we need to show that \(B_m(1) = B_m(0) \), which is the same as saying that

\[\sum_k \binom{m}{k} B_k = B_m, \quad \text{for } m > 1. \]

But this is just the definition of Bernoulli numbers, \((6.79) \), so we’re done.

The identity \(B_m'(x) = mB_{m-1}(x) \) implies that

\[\int_0^1 B_m(x) \, dx = \frac{B_{m+1}(1) - B_{m+1}(0)}{m+1}, \]

and we know now that this integral is zero when \(m \geq 1 \). Hence the remainder term in Euler’s formula,

\[R_m = \frac{(-l)^{m+1}}{m!} \int_a^b B_m((x)) f^{(m)}(x) \, dx, \]

multiplies \(f^{(m)}(x) \) by a function \(B_m((x)) \) whose average value is zero. This means that \(R_m \) has a reasonable chance of being small.

Let’s look more closely at \(B_m(x) \) for \(0 \leq x \leq 1 \), since \(B_m(x) \) governs the behavior of \(R_m \). Here are the graphs for \(B_m(x) \) for the first twelve values of \(m \):

\[
\begin{align*}
 &m = 1 & m = 2 & m = 3 & m = 4 \\
 B_m(x) & & & & \\
 B_{4+m}(x) & & & & \\
 B_{8+m}(x) & & & & \\
\end{align*}
\]

Although \(B_3(x) \) through \(B_6(x) \) are quite small, the Bernoulli polynomials and numbers ultimately get quite large. Fortunately \(R_m \) has a compensating factor \(\frac{1}{m!} \), which helps to calm things down.