by the eigenvector $\xi^{(1)}$ corresponding to the positive eigenvalue r_1. The only solutions that approach the critical point at the origin are those that start precisely on the line determined by $\xi^{(2)}$. Figure 9.1.2b shows some typical graphs of x_1 versus t. For certain initial conditions the positive exponential term is absent from the solution, so $x_1 \to 0$ as $t \to \infty$. For all other initial conditions the positive exponential term eventually dominates and causes x_1 to become unbounded. The behavior of x_2 is similar. The origin is called a saddle point in this case.

A specific example of a saddle point is in Example 1 of Section 7.5 whose trajectories are shown in Figure 7.5.2.

CASE 3 Equal Eigenvalues. We now suppose that $r_1 = r_2 = r$. We consider the case in which the eigenvalues are negative; if they are positive, the trajectories are similar but the direction of motion is reversed. There are two subcases, depending on whether the repeated eigenvalue has two independent eigenvectors or only one.

(a) **Two independent eigenvectors.** The general solution of Eq. (2) is

$$
\mathbf{x} = c_1 \xi^{(1)} e^{rt} + c_2 \xi^{(2)} e^{rt},
$$

where $\xi^{(1)}$ and $\xi^{(2)}$ are the independent eigenvectors. The ratio x_2/x_1 is independent of t, but depends on the components of $\xi^{(1)}$ and $\xi^{(2)}$, and on the arbitrary constants c_1 and c_2. Thus every trajectory lies on a straight line through the origin, as shown in Figure 9.1.3a. Typical graphs of x_1 or x_2 versus t are shown in Figure 9.1.3b. The critical point is called a proper node, or sometimes a star point.

(b) **One independent eigenvector.** As shown in Section 7.8, the general solution of Eq. (2) in this case is

$$
\mathbf{x} = c_1 \xi e^{rt} + c_2 (\xi e^{rt} + \eta e^{rt}),
$$

where ξ is the eigenvector and η is the generalized eigenvector associated with the repeated eigenvalue. For large t the dominant term in Eq. (9) is $c_2 \xi e^{rt}$. Thus, as $t \to \infty$, every trajectory approaches the origin tangent to the line through the eigenvector. This is true even if $c_2 = 0$, for then the solution $\mathbf{x} = c_1 \xi e^{rt}$ lies on this line. Similarly, for large negative t the term $c_2 \xi e^{rt}$ is again the dominant one, so as $t \to -\infty$, each trajectory is asymptotic to a line parallel to ξ.

FIGURE 9.1.2 A saddle point; $r_1 > 0, r_2 < 0.$ (a) The phase plane. (b) x_1 versus t.

![Saddle Point Diagram](image-url)