tention to zero-sum security games, unless otherwise specified. As above, we consider ER and PA generative models, although we utilize a generalized version of PA. In a generalized PA model, connection probabilities are \(\frac{(d_j)^\mu}{\sum_i (d_i)^\mu} \), such that when \(\mu = 0 \) the degree distribution is relatively homogeneous, just as in ER, \(\mu = 1 \) recovers the “standard” PA model, and large values of \(\mu \) correspond to highly inhomogeneous degree distributions. Throughout, we use \(\mu = 1 \) unless otherwise specified. All parameters are set as in the experiments section, unless otherwise specified.

In addition to generative models of networks, we explore two networks derived from real security settings: one with 18 nodes that models dependencies among critical infrastructure and key resource sectors (CIKR), as inferred from the DHS and FEMA websites, and the second with 66 nodes that captures payments between banks in the core of the Fedwire network [Soramaki et al., 2007].

For the CIKR network, each node was assigned a low, medium, or high worth of 0.2, 0.5, or 1, respectively, based on perceived importance (for example, the energy sector was assigned a high worth, while the national monuments and icons sector a low worth). Each edge was categorized based on the importance of the dependency (gleaned from the DHS and FEMA websites) as “highly” or “moderately” significant, with cascade probabilities of 0.5 or 0.1 respectively. For the Fedwire network, all nodes were assigned an equal worth of 0.5, and cascade probabilities were discretely chosen between 0.05 and 0.5 in 0.05 increments depending on the weight of the corresponding edges shown in Soramaki et al. [2007].

6.1 The Impact of Uncertainty

Our framework offers a natural way to incorporate uncertainty about the network into the analysis. An important question is: how much impact on defender decision does uncertainty about the network have? Figure 3 quantifies the impact of uncertainty on the quality of defense if the observed graph is the PA network with average degree of 2. When cascade probabilities are relatively high \((p_{t,t'} = 0.5 \) for all edges, top plot), even if the amount of noise is relatively small \((\epsilon = 0.01) \), the resulting increase in the number of possible cascade paths in the network makes the defender much more vulnerable. With smaller cascade probabilities \((p_{t,t'} = 0.1 \) bottom plot), however, noise has relatively little impact. It can thus be vital for the defender to obtain an accurate portrait of the true network over which failures may cascade when the interdependencies among the components are strong.

6.2 The Impact of Marginal Defense Cost

Our next analysis deals with the impact of marginal defense cost \(c \) on defender expected losses, its total costs, and the sum of these (i.e., negative expected utility). The results for ER and BA (both with 100 nodes and average degree of 2), as well as CIKR and Fedwire networks are shown in Figure 4. All the plots feature a clear pattern: expected loss and (negative) utility are monotonically increasing, as expected, while total costs start at zero, initially rise, and ultimately fall (back to zero in 3 of the 4 cases). It may at first be surprising that total costs eventually fall even as marginal costs continue to increase, but this clearly must be the case: when \(c \) is high enough, the defender will not wish to invest in security at all, and total costs will be zero. What is much more surprising is the presence of two peaks in PA and Fedwire networks. Both of these networks share the property that there is a non-negligible fraction of nodes with very high connectivity [Newman, 2010, Soramaki et al., 2007]. When the initial peak is reached, the network is fully defended, and as marginal costs rise further, the defender begins to reduce the defense resources expended on the less important targets. At a certain point, only the most connected targets are protected, and since these are so vital to protect, total costs begin increasing again. After the second peak is reached, \(c \) is finally large enough to discourage the defender from fully protecting even the most important targets, and the subsequent fall of