39 Evaluate \(\sum_{0 \leq k < n} \ln(n - k)/(\ln n)^k/k! \) with absolute error \(O(n^{-1}) \). Hint: Show that the terms for \(k \geq 10 \ln n \) are negligible.

40 Let \(m \) be a (fixed) positive integer. Evaluate \(\sum_{k=1}^{n} (-1)^k H_k^m \) with absolute error \(O(1) \).

41 Evaluate the “Fibonacci factorial” \(\prod_{k=1}^{n} F_k \) with relative error \(O(n^{-1}) \) or better. Your answer may involve a constant whose value you do not know in closed form.

42 Let \(\alpha \) be a constant in the range \(0 < \alpha < \frac{1}{2} \). We’ve seen in previous chapters that there is no general closed form for the sum \(\sum_{k \leq \alpha n} \binom{n}{k} \).

Show that there is, however, an asymptotic formula

\[
\sum_{k \leq \alpha n} \binom{n}{k} = 2^{nH(\alpha) - \frac{1}{2} \log n + O(1)} ,
\]

where \(H(\alpha) = \alpha \log \frac{1}{\alpha} + (1 - \alpha) \log \frac{1}{1 - \alpha} \). Hint: Show that \(\binom{n}{k} \leq \frac{\alpha}{1 - \alpha} \binom{n}{k-1} \) for \(0 < k \leq \alpha n \).

43 Let \(C_n \), the number of ways to change \(n \) cents (as considered in Chapter 7) is asymptotically \(cn^4 + O(n^3) \) for some constant \(c \). What is that constant?

44 Prove that

\[
\chi^{1/2} = \chi^{1/2} \left[\frac{1/2}{1/2} \right] - \chi^{-1/2} \left[\frac{1/2}{-1/2} \right] + \chi^{-3/2} \left[\frac{1/2}{-3/2} \right] + O(\chi^{-5/2})
\]

as \(\chi \to \infty \). (Recall the definition \(\chi^{1/2} = \chi! / [\chi^{1/2}]! \) in (5.88), and the definition of generalized Stirling numbers in Table 258.)

45 Let \(\alpha \) be an irrational number between 0 and 1. Chapter 3 discusses the quantity \(D(\alpha, n) \), which measures the maximum discrepancy by which the fractional parts \(\{k\alpha\} \) for \(0 \leq k < n \) deviate from a uniform distribution. The recurrence

\[
D(\alpha, n) \leq D(\lfloor \alpha^{-1} \rfloor, \lfloor \alpha n \rfloor) + \alpha^{-1} + 2
\]

was proved in (3.31); we also have the obvious bounds

\[
0 \leq D(\alpha, n) \leq n.
\]

Prove that \(\lim_{n \to \infty} D(\alpha, n)/n = 0 \). Hint: Chapter 6 discusses continued fractions.