480 ASYMPTOTICS

a What is the asymptotic expected return after one year, if \(n \) million dollars are invested? (In other words, what is the mean value of the payment?) Your answer should be correct within an absolute error of \(O(10^{-n}) \) dollars.

b What is the asymptotic probability that you make a profit, if you invest \(n \) million? (In other words, what is the chance that you get back more than you put in?) Your answer here should be correct within an absolute error of \(O(n^{-3}) \).

Bonus problems

51 Prove or disprove: \(\int_n^\infty O(x^{-2}) \, dx = O(n^{-1}) \) as \(n \to \infty \).

52 Show that there exists a power series \(A(z) = \sum_{k \geq 0} a_k z^k \), convergent for all complex \(z \), such that

\[
A(n) \approx n^n \int_0^\infty \frac{1}{x^n} \, dx.
\]

53 Prove that if \(f(x) \) is a function whose derivatives satisfy

\[
f'(x) \geq 0, \quad -f''(x) \leq 0, \quad f'''(x) \leq 0, \quad \ldots \quad (-1)^m f^{(m+1)}(x) \leq 0
\]

for all \(x \geq 0 \), then we have

\[
f(x) = f(0) + \frac{f'(0)}{1!} x + \cdots + \frac{f^{(m-1)}(0)}{(m-1)!} x^{m-1} + O(x^m), \quad \text{for } x \geq 0.
\]

In particular, the case \(f(x) = -\ln(1+x) \) proves (9.64) for all \(k, n > 0 \).

54 Let \(f(x) \) be a positive, differentiable function such that \(xf'(x) \leq f(x) \) as \(x \to \infty \). Prove that

\[
\sum_{k \geq n} \frac{f(k)}{k^{1+\alpha}} = O\left(\frac{f(n)}{n^\alpha} \right), \quad \text{if } \alpha > 0.
\]

Hint: Consider the quantity \(f(k - 1/2)/(k - 1/2)^\alpha \).

55 Improve (9.99) to relative error \(O(n^{-3/2+\epsilon}) \).

56 The quantity \(Q(n) = 1 + \frac{n-1}{n} + \frac{n-2}{n^2} + \cdots + \sum_{k \geq 1} \frac{n^k}{n^k} \) occurs in the analysis of many algorithms. Find its asymptotic value, with absolute error \(o(1) \).

57 An asymptotic formula for Golomb’s sum \(\sum_{k \geq 1} 1/k[1 + \log_k k]^2 \) is derived in (9.54). Find an asymptotic formula for the analogous sum without floor brackets, \(\sum_{k \geq 1} 1/k(1 + \log_k k)^2 \). Hint: We have \(\int_0^\infty x e^{-ux} k^{-tu} \, du = 1/(1 + t \ln k)^2 \).