Find a “combinatorial” proof of Stirling’s approximation. (Note that n^n is the number of mappings of $\{1, 2, \ldots, n\}$ into itself, and $n!$ is the number of mappings of $\{1, 2, \ldots, n\}$ onto itself.)

Consider an $n \times n$ array of dots, $n \geq 3$, in which each dot has four neighbors. (At the edges we “wrap around” modulo n.) Let X_n be the number of ways to assign the colors red, white, and blue to these dots in such a way that no neighboring dots have the same color. (Thus $X_3 = 12$.)

Prove that

$$X_n \sim \left(\frac{4}{3}\right)^{3n/2} e^{-\pi/6}.$$

Let Q_n be the least integer m such that $H_m > n$. Find the smallest integer n such that $Q_n \neq \left[e^{n-\gamma} + \frac{1}{2}\right]$, or prove that no such n exist.

Th-th-th-that’s all, folks!