Bertrand’s postulate there is a prime \(p \) between \(n/2 \) and \(n \). We can also assume that \(j > n/2 \), since \(q^j = L(n) + 1 \) leaves \(j = n + 1 \) if and only if \(q \) leaves \(j \). Choose \(q \) so that \(q \equiv 1 \pmod{L(n)/p} \) and \(q \equiv j + 1 \pmod{n} \). The people are now removed in order \(1, 2, \ldots, n, j + 1, j + 2, \ldots, n, n-p+1, \ldots, j-1 \).

1.24 The only known examples are: \(X_n = a/X_{n-1} \), which has period 2; R. C. Lyness’s recurrence of period 5 in exercise 8; H. Todd’s recurrence \(X_n = (1 + X_n + X_{n-2})/X_{n-3} \), which has period 8; and recurrences derived from these by substitutions of the form \(Y_n = \alpha X_{n-1} \). An exhaustive search by Bill Gosper turned up no nontrivial solutions of period 4 when \(k = 2 \). A partial theory has been developed by Lyness [210] and by Kurshan and Gopinath [189]. An interesting example of another type, with period 9 when the starting values are real, is the recurrence \(X_n = |X_{n-1} - X_{n-2} | \) discovered by Morton Brown [38]. Nonlinear recurrences having any desired period \(\geq 5 \) can be based on continuants [55].

1.25 If \(T_k^{[1]}(n) \) denotes the minimum number of moves needed to transfer \(n \) disks with \(k \) auxiliary pegs (hence \(T_k^{[1]}(n) = T_n \) and \(T_k^{[2]}(n) = W_n \)), we have \(T_k^{[1]}(n) \leq 2T_k^{[1]}(\binom{n-1}{k}) + T^{[1]}(\binom{n}{k+1}) \). No examples \((n, k) \) are known where this inequality fails to be an equality. When \(k \) is small compared with \(n \), the formula \(2^{n-k} \binom{n-1}{k-1} \) gives a convenient (but non-optimum) upper bound on \(T_k^{[1]}(n) \).

1.26 The execution-order permutation can be computed in \(O(n \log n) \) steps for all \(m \) and \(n \) [175, exercises 5.1.1-2 and 5.1.1-5]. Bjorn Poonen [241] has proved that non-Josephus sets with exactly four “bad guys” exist whenever \(n \equiv 0 \pmod{3} \) and \(n \geq 9 \); in fact, the number of such sets is at least \(e \binom{n}{4} \) for some \(e > 0 \). He also found by extensive computations that the only other \(n < 24 \) with non-Josephus sets is \(n = 20 \), which has 236 such sets with \(k = 14 \) and two with \(k = 13 \). (One of the latter is \(\{1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 15, 16, 17\} \); the other is its reflection with respect to 21.) There is a unique non-Josephus set with \(n = 15 \) and \(k = 9 \), namely \(\{3, 4, 5, 6, 8, 10, 11, 12, 13\} \).

2.1 There’s no agreement about this; three answers are defensible: (1) We can say that \(\sum_{k=m}^n q_k \) is always equivalent to \(\sum_{m \leq k \leq n} q_k \); then the stated sum is zero. (2) A person might say that the given sum is \(q_4 + q_3 + q_2 + q_1 + q_0 \), by summing over decreasing values of \(k \). But this conflicts with the generally accepted convention that \(\sum_{k=1}^n q_k = 0 \) when \(n = 0 \). (3) We can say that \(\sum_{k=m}^n q_k = \sum_{k \leq m} q_k - \sum_{k \leq m} q_k \); then the stated sum is \(-q_1 - q_2 - q_3 \). This convention may appear strange, but it obeys the useful law \(\sum_{k=a}^b + \sum_{k=b+1}^c = \sum_{k=a}^c \) for all \(a, b, c \).

It’s best to use the notation \(\sum_{k=m}^n q_k \) only when \(n - m \geq -1 \); then both conventions (1) and (3) agree.