3.11 If \(n \) is an integer, \(\alpha < n < \beta \iff [\alpha] < n < [\beta] \). The number of integers satisfying \(a < n < b \) when \(a \) and \(b \) are integers is \((b - a - 1)(b > a)\).
We would therefore get the wrong answer if \(\alpha = \beta = \text{integer} \).

3.12 Subtract \([n/m]\) from both sides, by (3.6), getting \([n \mod m]/m] = \([n \mod m + m - 1]/m]\). Both sides are now equal to \([n \mod m > 0]\), since \(0 \leq n \mod m < m\).
A shorter but less direct proof simply observes that the first term in (3.24) must equal the last term in (3.25).

3.13 If they form a partition, the text’s formula for \(N(\alpha, n) \) implies that \(1/\alpha + 1/\beta = 1 \), because the coefficients of \(n \) in the equation \(N(\alpha, n) + N(\beta, n) = n \) must agree if the equation is to hold for large \(n \). Hence \(\alpha \) and \(\beta \) are both rational or both irrational. If both are irrational, we do get a partition, as shown in the text. If both can be written with numerator \(m \), the value \(m-1 \) occurs in neither spectrum. (However, Golomb [121] has observed that the sets \{\([n\alpha] \mid n \geq 1 \}\} and \{\([n\beta] - 1 \mid n \geq 1 \}\} always do form a partition, when \(1/\alpha + 1/\beta = 1 \).)

3.14 It’s obvious if \(ny = 0 \), otherwise true by (3.21) and (3.6).

3.15 Plug in \([mx]\) for \(n \) in (3.24): \([mx] = [x] + [x - \frac{1}{m}] + \cdots + [x - \frac{m-1}{m}].\)

3.16 The formula \(n \mod 3 = 1 + \frac{1}{2}(\omega - 1)\omega^n - (\omega + 2)\omega^{2n} \) can be verified by checking it when \(0 \leq n < 3 \).
A general formula for \(n \mod m \), when \(m \) is any positive integer, appears in exercise 7.25.

3.17 \[\sum_{k,l:0 \leq k < m}[1 \leq j \leq x + k/m] = \sum_{k,l:0 \leq k < m}[1 \leq j \leq \lfloor x \rfloor] x \lfloor k \lfloor j - x \rfloor \rfloor = \sum_{l=\lfloor x \rfloor} \sum_{k:0 \leq k \leq m(j - x)} \lfloor m[j] \rfloor = [m(\lfloor x \rfloor - x)] = -[mx] = [mx] - m[\lfloor x \rfloor].\]

3.18 We have
\[
S = \sum_{0 \leq \ell < [n\alpha]} \sum_{k \geq n} [j\alpha^{-1} \leq k < (j + \nu)\alpha^{-1}].
\]
If \(j \leq [n\alpha] - n \leq \nu \), there is no contribution, because \((j + \nu)\alpha^{-1} \leq n\).
Hence \(j = [n\alpha] \) is the only case that matters, and the value in that case equals \([([n\alpha] + \nu)\alpha^{-1}] - n \leq [n\alpha^{-1}].\)

3.19 If and only if \(b \) is an integer. (If \(b \) is an integer, \(\log x \) is a continuous, increasing function that takes integer values only at integer points. If \(b \) is not an integer, the condition fails when \(x = b \).)

3.20 We have \(\sum_{k} kx[\alpha \leq kx \leq \beta] = x \sum_{k} kl[\alpha/k] \leq k \leq [\beta/k]], which sums to \(\frac{1}{2}x([\beta/x]([\beta/x + 1] - ([\alpha/x]([\alpha/x - 1])).\)