4.45 \(x^2 \equiv x \pmod{10^n} \iff x(x-1) \equiv 0 \pmod{2^n} \) and \(x(x-1) \equiv 0 \pmod{5^n} \iff x \equiv 0 \pmod{2^n} \). The last step is justified because \(x(x-1) \pmod{5} = 0 \) implies that either \(x \) or \(x-1 \) is a multiple of 5, in which case the other factor is relatively prime to \(5^n \) and can be divided from the congruence.

So there are at most four solutions, of which two \((x = 0 \text{ and } x = 1) \) don’t qualify for the title “n-digit number” unless \(n = 1 \). The other two solutions have the forms \(x \) and \(10001 - x \), and at least one of these numbers is \(\geq 100 \). When \(n = 4 \) the other solution, 10001 - 9376 = 625, is not a four-digit number. We expect to get two n-digit solutions for about 90% of all \(n \), but this conjecture has not been proved.

(Such self-reproducing numbers have been called “automorphic.”)

4.46 (a) If \(j \mid k \iff k = \gcd(j,k) \), we have \(n^{k/k} \cdot \gcd(i,k) = n^i \equiv 1 \) and \(n^{k/k} \equiv 1 \). (b) Let \(n = pq \), where \(p \) is the smallest prime divisor of \(n \). If \(2^n \equiv 1 \pmod{n} \) then \(2^n \equiv 1 \pmod{p} \). Also \(2^{p-1} \equiv 1 \pmod{p} \); hence \(2^{\gcd(p-1,n)} \equiv 1 \pmod{p} \). But \(\gcd(p-1,n) = 1 \) by the definition of \(p \).

4.47 If \(n^{m-1} \equiv 1 \pmod{m} \) we must have \(n \not\equiv 1 \pmod{m} \). If \(n^k \equiv n^j \) for some \(1 \leq j < k < m \), then \(n^{k-j} \equiv 1 \) because we can divide by \(n^j \). Therefore if the numbers \(n^1 \pmod{m}, \ldots, n^{n-1} \pmod{m} \) are not distinct, there is a \(k \leq m-1 \) with \(n^k \equiv 1 \). The least such \(k \) divides \(m-1 \), by exercise 46(a). But then \(kq = (m-1)/p \) for some prime \(p \) and some positive integer \(q \); this is impossible, since \(n^{kq} \not\equiv 1 \). Therefore the numbers \(n^1 \pmod{m}, \ldots, n^{m-1} \pmod{m} \) are distinct and relatively prime to \(m \). Therefore the numbers \(1, \ldots, m-1 \) are relatively prime to \(n \), and \(m \) must be prime.

4.48 By pairing numbers up with their inverses, we can reduce the product \(n^2 \equiv 1 \pmod{m} \) to \(\prod_{1 \leq i < n, n^i \equiv 1 \pmod{m}} n \). Now we can use our knowledge of the solutions to \(n^2 \equiv 1 \pmod{m} \). By residue arithmetic we find that the result is \(m = 1 \) if \(m = 4 \), \(p^k \), or \(2p^k \) \((p > 2) \); otherwise it’s +1.

4.49 (a) Either \(m < n \) (\(\Phi(N-1) \) cases) or \(m = n \) (one case) or \(m > n \) (\(\Phi(N-1) \) again). Hence \(R(N) = 2\Phi(N-1) + 1 \). (b) \(\Phi(N) = 2\sum_{d \mid N} \mu(d)[N/d][N/d-1] \); hence the stated result holds if and only if

\[
\sum_{d \mid N} \mu(d)[N/d][N/d-1] = 1 \quad \text{for } N \geq 1
\]

And this is a special case of (4.61) if we set \(f(x) = (x \geq 1) \).