4.50 (a) If \(f \) is any function,
\[
\sum_{0 \leq k < m} f(k) = \sum_{d \mid m} \sum_{0 \leq k < m} f(k)[d = \gcd(k, m)]
\]
\[
= \sum_{d \mid m} \sum_{0 \leq k < d} f(k)[k \perp \frac{m}{d}]
\]
\[
= \sum_{d \mid m} \sum_{0 \leq k < d} f(kd)[k \perp \frac{m}{d}]
\]
\[
= \sum_{d \mid m} \sum_{0 \leq k < d} f(km/d)[k \perp d]
\]
we saw a special case of this in the derivation of (4.63). An analogous derivation holds for \(\prod \) instead of \(\sum \). Thus we have
\[
z^m - 1 = \prod_{0 \leq k < m} (z - \omega^k) = \prod_{d \mid m} \prod_{0 \leq k < d} (z - \omega^{km/d}) = \prod_{d \mid m} \Psi_d(z)
\]
because \(\omega^{m/d} = e^{\frac{2\pi i}{d}} \).

Part (b) follows from part (a) by the analog of (4.56) for products instead of sums. Incidentally, this formula shows that \(\Psi_m(z) \) has integer coefficients, since \(\Psi_m(z) \) is obtained by multiplying and dividing polynomials whose leading coefficient is 1.

4.51 \((x_1 + \cdots + x_n)^p = \sum_{k_1 + \cdots + k_n = p} \frac{p!}{(k_1! \cdots k_n!)} x_1^{k_1} \cdots x_n^{k_n}, \text{ and the coefficient is divisible by } p \) unless some \(k_i = p \). Hence \((x_1 + \cdots + x_n)^p \equiv x_1^p + \cdots + x_n^p \) (mod \(p \)). Now we can set all the \(x \)'s to 1, obtaining \(n^p \equiv n \).

4.52 If \(p > n \) there is nothing to prove. Otherwise \(x_1 \perp p \), so \(x^k(p-1) \equiv 1 \) (mod \(p \)); this means that at least \([n-1]/(p-1)] \) of the given numbers are multiples of \(p \). And \((n-1)/(p-1) \geq n/p \) since \(n \geq p \).

4.53 First show that if \(m \geq 6 \) and \(m \) is not prime then \((m-2)! \equiv 0 \) (mod \(m \)). (If \(m = p^2 \), the product for \((m-2)!\) includes \(p \) and \(2p \); otherwise it includes \(d \) and \(m/d \) where \(d < m/d \).) Next consider cases:

Case 0, \(n < 5 \). The condition holds for \(n = 1 \) only.

Case 1, \(n \geq 5 \) and \(n \) is prime. Then \((n-1)!/(n+1) \) is an integer and it can’t be a multiple of \(n \).

Case 2, \(n \geq 5 \), \(n \) is composite, and \(n + 1 \) is composite. Then \(n \) and \(n+1 \) divide \([n-1]!\), and \(n \perp n+1 \); hence \(n|[n+1]/[n-1]!\).

Case 3, \(n \geq 5 \), \(n \) is composite, and \(n + 1 \) is prime. Then \((n-1)! \equiv 1 \) (mod \(n + 1 \)) by Wilson’s theorem, and
\[
[n-1]!/[n+1] = ([n-1]+n)/(n+1);
\]